簡易檢索 / 詳目顯示

研究生: 謝采育
Hsieh, Tsai-Yu
論文名稱: 結合壓縮感知方法與深度學習增強技術之超穎介面光譜儀研究
Metasurface-based Compressed Sensing Spectrometer with Deep Learning Enhancement
指導教授: 林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 智慧半導體及永續製造學院 - 關鍵材料學位學程
Program on Key Materials
論文出版年: 2025
畢業學年度: 114
語文別: 中文
論文頁數: 120
中文關鍵詞: 超穎介面壓縮感知光譜重建奈米轉印深度學習微型光譜儀
外文關鍵詞: Metasurfaces, Compressed Sensing, Spectral Reconstruction, Nanoimprint, Deep Learning, Miniaturized Spectrometer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著光譜分析技術在各領域應用的快速發展,微型化光譜儀的需求日益增長。傳統光譜儀依賴光柵或稜鏡等色散元件,體積龐大且成本高昂,限制了其在便攜式設備中的應用。本論文提出基於超穎介面的壓縮感知光譜重建系統,透過奈米轉印技術製作鋁洞陣列結構,結合深度學習增強方法實現高精度的微型光譜儀。利用嚴格耦合波分析法設計49個具有不同幾何參數的超穎介面單元,線寬範圍從90 nm至390 nm,週期與線寬比為2及2.5,在400-700 nm可見光範圍內展現差異化的光學響應,平均相關係數為0.2942。製程採用PFPE軟模具複製矽母模結構,透過NOA63作為透明聚合物基底,以熱蒸鍍沉積50 nm鋁薄膜,最後使用膠帶移除平坦區域的鋁,形成次波長孔洞陣列。實驗量測顯示各超穎介面單元間平均相關係數為0.3536,條件數為828。在光譜重建方面,實現並評估了十種壓縮感知方法,包括Ridge迴歸、ADMM-TV、FISTA等,並開發四層全連接神經網路進行深度學習增強。統計分析顯示,Ridge(α=0.01)方法經深度學習增強後達到高度顯著改善(p=0.002),效果量達Cohen's d=1.008,重建結果幾乎完全接近真實光譜,在採用ADMM-TV配合深度學習增強時,可達到約7-8 nm的有效光譜解析度。本研究成功實現了無色散元件的微型光譜儀,證實超穎介面結合壓縮感知與深度學習在光譜重建的可行性。

    With rapid development of spectroscopic applications, demand for miniaturized spec-trometers has increased. Traditional spectrometers rely on dispersive elements like gratings, resulting in bulky and expensive systems. This thesis presents compressed sensing spectral reconstruction based on metasurfaces, fabricating aluminum hole ar-rays through nanoimprint technology combined with deep learning enhancement. Us-ing RCWA, 49 metasurface units were designed with linewidths from 90-390 nm and period-to-linewidth ratios of 2 and 2.5, showing differentiated optical responses in 400-700 nm with average correlation coefficient of 0.2942. Fabrication employed PFPE soft molds replicating silicon masters, NOA63 as transparent polymer substrate, 50 nm aluminum deposition via thermal evaporation, and selective tape removal forming subwavelength hole arrays. Measurements showed average correlation coef-ficient of 0.3536 between units with condition number 828. Ten compressed sensing methods were implemented including Ridge regression, ADMM-TV, and FISTA, with four-layer neural network for enhancement. Statistical analysis revealed Ridge (α=0.01) achieved highly significant improvement (p=0.002) with Cohen's d=1.008 after deep learning, producing near-perfect spectral reconstruction. When ADMM-TV is employed in combination with deep learning enhancement, an effective spectral resolution of approximately 7–8 nm can be achieved.

    摘要 I 致謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第 一 章 緒論 1 1.1 前言與研究動機 1 1.2 論文架構 3 第 二 章 理論原理與文獻回顧 4 2.1 金屬超穎介面 4 2.2 奈米轉印技術 7 2.3 光譜重建 9 2.3.1 壓縮感知 9 2.3.2 深度學習 11 2.3.3 壓縮感知與深度學習混合方法 12 第 三 章 研究方法 15 3.1 各式模具製作與藥品配置 15 3.1.1 矽母模具製作 15 3.1.2 全氟聚醚(PFPE)軟式模具製作 18 3.1.3 NOA63轉印模具製作 19 3.1.4 藥品配製 20 3.2 超穎介面模擬與製作 21 3.2.1 RCWA模擬 21 3.2.2 SU-8轉印製程 23 3.2.3 PVA轉印製程 24 3.2.4 NOA61轉印製程 25 3.2.5 鋁洞陣列製程 26 3.3 量測與數據分析 27 3.3.1 超穎介面材料光學量測 27 3.3.2 光譜重建量測架構 29 3.3.3 檢視結構與分析儀器 31 3.3.4 光譜重建 31 第 四 章 實驗結果與討論 38 4.1 RCWA超穎介面結構模擬 38 4.2 轉印製程結果與討論 41 4.2.1 PFPE轉印模具使用 41 4.2.2 NOA63轉印模具使用 43 4.3 鋁洞陣列製程結果與討論 44 4.4 光譜重建 45 4.4.1 壓縮感知重建 45 4.4.2 深度學習增強效果分析 51 4.4.3 光譜解析度評估 57 第 五 章 結論與展望 91 5.1.1 結論 91 5.1.2 未來展望 93 參考文獻 95

    1. Bacon, C.P. et al., Miniature spectroscopic instrumentation: Applications to biology and chemistry. Review of Scientific Instruments, 75(1), 1-16 (2004).
    2. Yu, N. et al., Flat optics with designer metasurfaces. Nat Mater, 13(2), 139-50 (2014).
    3. Kildishev, A.V. et al., Planar photonics with metasurfaces. Science, 339(6125), 1232009 (2013).
    4. Ebbesen, T.W. et al., Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391(667-669 (1998).
    5. Candes, E.J. et al., An Introduction To Compressive Sampling. IEEE Signal Processing Magazine, 25(2), 21-30 (2008).
    6. Donoho, D.L., Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289-1306 (2006).
    7. Guo, L.J., Nanoimprint Lithography: Methods and Material Requirements. Advanced Materials, 19(4), 495-513 (2007).
    8. Chu, Q. et al., Controlling thermal emission with metasurfaces and its applications. Nanophotonics, 13(8), 1279-1301 (2024).
    9. Kuznetsov, A.I. et al., Roadmap for Optical Metasurfaces. ACS Photonics, 11(3), 816-865 (2024).
    10. Zhou, Y. et al., Flexible Metasurfaces for Multifunctional Interfaces. ACS Nano, 18(4), 2685-2707 (2024).
    11. Nanfang Yu et al., Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science, 334(6054), 333-337 (2011).
    12. Maier, S.A., Plasmonics: Fundamentals and Applications, New York: Springer (2007).
    13. Barnes, W.L. et al., Surface plasmon subwavelength optics. Nature, 424(824-830 (2003).
    14. Cheng, C.-W. et al., Epitaxial aluminum plasmonics covering full visible spectrum. Nanophotonics, 10(1), 627-637 (2020).
    15. Knight, M.W. et al., Aluminum for Plasmonics. ACS Nano, 8(1), 834-840 (2014).
    16. Fan, Q. et al., Aluminum-based plasmonic metasurface for computational spectrometry with full coverage of visible light. Opt Lett, 49(1), 21-24 (2024).
    17. Siddique, R.H. et al., Aluminum Metasurface with Hybrid Multipolar Plasmons for 1000-Fold Broadband Visible Fluorescence Enhancement and Multiplexed Biosensing. ACS Nano, 13(12), 13775-13783 (2019).
    18. Angelini, M. et al., Plasmonic Modes and Fluorescence Enhancement Coupling Mechanism: A Case with a Nanostructured Grating. Nanomaterials (Basel), 12(23), (2022).
    19. Lidan Zhang et al., Real-time machine learning–enhanced hyperspectro-polarimetric imaging via an encoding metasurface. Science Advances, 10(36), (2024).
    20. Yang, Y. et al., Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. Light Sci Appl, 12(1), 152 (2023).
    21. Ahn, J. et al., Illuminating Recent Progress in Nanotransfer Printing: Core Principles, Emerging Applications, and Future Perspectives. Adv Sci (Weinh), 11(1), e2303704 (2024).
    22. Lee, S.M. et al., Ecofriendly Transfer Printing for Biodegradable Electronics Using Adhesion Controllable Self‐Assembled Monolayers. Advanced Functional Materials, 34(6), (2023).
    23. Williams, S.S. et al., High-resolution PFPE-based molding techniques for nanofabrication of high-pattern density, sub-20 nm features: a fundamental materials approach. Nano Lett, 10(4), 1421-8 (2010).
    24. Kendall, K., Thin-film peeling-the elastic term. Journal of Physics D: Applied Physics, 8(13), 1449-1452 (1975).
    25. Liu, J. et al., Significant Enhancement of the Adhesion between Metal Films and Polymer Substrates by UV-Ozone Surface Modification in Nanoscale. ACS Appl Mater Interfaces, 8(44), 30576-30582 (2016).
    26. Pletincx, S. et al., Probing the formation and degradation of chemical interactions from model molecule/metal oxide to buried polymer/metal oxide interfaces. npj Materials Degradation, 3(1), (2019).
    27. Chanda, D. et al., Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nature Nanotech, 6(7), 402-407 (2011).
    28. Kelly, K.L. et al., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 107(3), 668-677 (2003).
    29. Hastie, T. et al., The Elements of Statistical Learning, New York: Springer (2009).
    30. Tibshirani, R., Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series B, 58(1), 267-288 (1996).
    31. Beck, A. et al., A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2(1), 183-202 (2009).
    32. Boyd, S., Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and Trends® in Machine Learning, 3(1), 1-122 (2010).
    33. Lawson, C.L. et al., Solving Least Squares Problems, Philadelphia, PA: SIAM (1976).
    34. Wipf, D.P. et al., Sparse Bayesian Learning for Basis Selection. IEEE Transactions on Signal Processing, 52(8), 2153-2164 (2004).
    35. Needell, D. et al., CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3), 301-321 (2009).
    36. Candès, E.J. et al., Enhancing Sparsity by Reweighted ℓ 1 Minimization. Journal of Fourier Analysis and Applications, 14(5-6), 877-905 (2008).
    37. Gao, L. et al., Computational spectrometers enabled by nanophotonics and deep learning. Nanophotonics, 11(11), 2507-2529 (2022).
    38. LeCun, Y. et al., Deep learning. Nature, 521(7553), 436-44 (2015).
    39. Raissi, M. et al., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378(686-707 (2019).
    40. He, K. et al., Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778 (2016).
    41. Willets, K.A. et al., Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 58(1), 267-97 (2007).
    42. Lin, C.-H. et al., Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis. Microelectronic Engineering, 83(4-9), 1798-1804 (2006).
    43. Feng, R. et al., Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings. Journal of Micromechanics and Microengineering, 13(1), 80-88 (2003).
    44. Lin, C.-H. et al., A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist. Journal of Micromechanics and Microengineering, 12(5), 590-597 (2002).
    45. Dey, T. et al., Cleaning and anti-reflective (AR) hydrophobic coating of glass surface: a review from materials science perspective. Journal of Sol-Gel Science and Technology, 77(1), 1-27 (2015).
    46. Israelachvili et al., Intermolecular and surface forces, 3rd ed. London; San Diego: Academic Press (2011).
    47. Cabezudo, N. et al., Enhancement of surface wettability via micro- and nanostructures by single point diamond turning. Nanotechnology and Precision Engineering, 2(1), 8-14 (2019).
    48. Carré, D.J., Perfluoropolyalkylether Oil Degradation: Inference of FeF3 Formation on Steel Surfaces under Boundary Conditions. A S L E Transactions, 29(2), 121-125 (1986).
    49. Dupont, E.P. et al., NOA 63 as a UV-curable material for fabrication of microfluidic channels with native hydrophilicity. Microelectronic Engineering, 87(5-8), 1253-1255 (2010).
    50. Kim, J.K. et al., Enhanced Flexible Mold Lifetime for Roll-to-Roll Scaled-Up Manufacturing of Adhesive Complex Microstructures. Adv Mater, 35(2), e2207257 (2023).
    51. Cassie, A.B.D. et al., Wettability of porous surfaces. Transactions of the Faraday Society, 40(546-551 (1944).
    52. Meitl, M.A. et al., Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Materials, 5(1), 33-38 (2005).
    53. Wang, Q. et al., Tape nanolithography: a rapid and simple method for fabricating flexible, wearable nanophotonic devices. Microsyst Nanoeng, 4(31 (2018).
    54. Candès, E. et al., Sparsity and incoherence in compressive sampling. Inverse Problems, 23(3), 969-985 (2007).
    55. Nehir, M. et al., Improving Optical Measurements: Non-Linearity Compensation of Compact Charge-Coupled Device (CCD) Spectrometers. Sensors (Basel), 19(12), (2019).
    56. Tikhonov, A.N. et al., Solution of Ill-Posed Problems, Washington, D.C.: V. H. Winston & Sons (1977).
    57. Rudin, L.I. et al., Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1-4), 259-268 (1992).
    58. Candes, E.J. et al., Decoding by Linear Programming. IEEE Transactions on Information Theory, 51(12), 4203-4215 (2005).
    59. Ioffe, S. et al., Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on International Conference on Machine Learning, 37(448-456 (2015).
    60. Monga, V. et al., Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing. IEEE Signal Processing Magazine, 38(2), 18-44 (2021).
    61. Kuznetsov, A.I. et al., Optically resonant dielectric nanostructures. Science, 354(6314), (2016).

    QR CODE