| 研究生: |
凃嘉豪 Tu, Chia-hao |
|---|---|
| 論文名稱: |
鋅/氧化鋅奈米線成長機制與性質的探討 Growth and characterization of Zn-ZnO hetero-structure nanowires |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 化學氣相沈積 、奈米線 、氧化鋅 |
| 外文關鍵詞: | ZnO, CVD, Nanowire |
| 相關次數: | 點閱:47 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,利用化學氣相沈積法置備氧化鋅奈米線,藉由不加入與加入催化劑-氯化亞錫,可得到兩種不同成長方向的鋅奈米線,一為[11-20],一為[000-2] ,推測兩者成長機制分別為VS與VLS,而後者可能是由於錫原子的加入,導致(0002)面表面能的改變,使成長方向轉變成成[000-2]。由於鋅金屬非常容易氧化,因此奈米線外層會形成一層約十奈米的氧化鋅原生氧化層,進而得到鋅/氧化鋅一維異質奈米線。另外,還可再經由退火的方式改變氧化鋅殼層的厚度與型態,而退火的溫度是影響型態及氧化程度很重要的參數,甚於持溫時間。氧化後的鋅/氧化鋅一維異質奈米線,其CL光譜的能隙峰值會隨氧化程度的減少,而呈現藍移現象。由於surface-to-volume ratio 越大,則surface band emission會越明顯。另外,藉由FIB及E-beam lithography,可以將鋅奈米線製作成奈米元件,且測量出此元件在室溫時下,其IV-curve是成線性,隨著溫度降低越趨於非線性。推測高溫時與低溫時,電子所傳導的路徑是不相同的;高溫是經由氧化鋅的殼層及鋅的核作為傳導途徑;低溫時,電子不具備足夠能量可以穿透鋅與氧化鋅的Schottky barrier,所以只能藉由氧化鋅的殼層作VRH方式傳導。
In this research, Zinc nanowire can be fabricated by thermal chemical vapor deposition without and with catalyst-SnCl2. Two different growth directions of the nanowires are obtained, one is , and another is . They are supposed to be controlled by two growth mechanisms which are VS and VLS, respectively. The surface energy of plane may be changed by adding Tin atoms into the nanowires which were fabricated with catalysts. Because zinc is easily oxidized, the zinc nanowires will cover with 10nm oxidized layer naturally, and Zn/ZnO core-shell nanowires are formed. Besides, the mophology and thickness of zinc nanowires will be controlled by annealing in oxygen, and the most important parameter of annealing is temperature rather than time. In catholuminescence analysis, the near-band edge emission peak of the annealed nanowires blue-shifts from 387nm to 382nm, as the thickness of ZnO shell decreases, corresponds to the decease of annealing temperature. The surface band emission from the ZnO shell reveals obviously due to the increase of surface-to-volume ratio. In addition, the nanowire can be made into nano-device by FIB and E-beam lithography. The I-V curves of the device show the ohmic contact behavior at room temperature, and turn into non-liner as the temperature decreases. The electrons are supposed to conduct through ZnO shell and Zinc core at high temperature while those with not enough energy to overcome the Schottky barrier between Zinc and ZnO at low temperature conduct only through ZnO shell by VRH process.
第6章 參考文獻
[1]J. D. Plummer, M. D. Deal, and P. B. Griffin., Silicon VLSI Technology, Fundamentals, Practice and Modeling (Prentice Hall, New Jersey, 2000).
[2]C. M. Lieber, Scientific American 285, 58 (2001).
[3]J. D. Meindl, Q. Chen, and J. A. Davis, Science 293, 2044 (2001).
[4]羅左財, and 呂光烈, (中央研究院週報 1142 期, 2007).
[5]C. M. Lieber, and Z. L. Wang, Mrs Bulletin 32, 99 (2007).
[6]X. F. Duan et al., Nature 409, 66 (2001).
[7]M. S. Arnold et al., Journal of Physical Chemistry B 107, 659 (2003).
[8]Y. Cui, and C. M. Lieber, Science 291, 851 (2001).
[9]M. H. Huang et al., Science 292, 1897 (2001).
[10]Y. Huang et al., Science 294, 1313 (2001).
[11]E. Comini et al., Applied Physics Letters 81, 1869 (2002).
[12]Y. Qin, X. D. Wang, and Z. L. Wang, Nature 451, 809 (2008).
[13]J. Xiang et al., Nature 441, 489 (2006).
[14]G. C. Liang et al., Nano Letters 7, 642 (2007).
[15]L. J. Lauhon et al., Nature 420, 57 (2002).
[16]Y. Wu et al., Nature 430, 61 (2004).
[17]S. J. Pearton et al., Journal of Vacuum Science & Technology B 22, 932 (2004).
[18]W. Shan et al., Physical Review B 54, 13460 (1996).
[19]A. Dadgar et al., Journal of Crystal Growth 267, 140 (2004).
[20]D. L. Smith, Thin Films by Chemical Vapor Deposition principle and practice (Mcgraw-Hill, USA, 1995).
[21]W. C. E. R.S. Wagner, Applied Physics Letters 4 (1964).
[22]Y. W. Wang et al., Chemical Physics Letters 357, 314 (2002).
[23]Y. J. Chen et al., Journal of Crystal Growth 245, 163 (2002).
[24]A. M. Morales, and C. M. Lieber, Science 279, 208 (1998).
[25]J. T. Hu, T. W. Odom, and C. M. Lieber, Accounts of Chemical Research 32, 435 (1999).
[26]Y. Y. Wu, and P. D. Yang, Journal of the American Chemical Society 123, 3165 (2001).
[27]T. J. Trentler et al., Science 270, 1791 (1995).
[28]Y. N. Xia et al., Advanced Materials 15, 353 (2003).
[29]H. Yu, and W. E. Buhro, Advanced Materials 15, 416 (2003).
[30]P. D. Yang, and C. M. Lieber, Journal of Materials Research 12, 2981 (1997).
[31]L. X. Zhao et al., Applied Physics a-Materials Science & Processing 74, 587 (2002).
[32]H. Z. Zhang et al., Solid State Communications 109, 677 (1999).
[33]B. Meyer, and D. Marx, Physical Review B 67, 035403 (2003).
[34]F. H. Leiter et al., Physica Status Solidi B-Basic Research 226, R4 (2001).
[35]W. E. Carlos, E. R. Glaser, and D. C. Look, Physica B: Condensed Matter 308-310, 976 (2001).
[36]F. Tuomisto et al., Physical Review Letters 91 (2003).
[37]D. M. Hofmann et al., Physical Review Letters 88 (2002).
[38]Z. Zhou et al., International Journal of Hydrogen Energy 29, 323 (2004).
[39]T. Nakada et al., Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 34, 3623 (1995).
[40]H. Ko et al., Journal of Crystal Growth 277, 352 (2005).
[41]S. Takeda, and M. Fukawa, Thin Solid Films 468, 234 (2004).
[42]T. Y. Ma, and D. K. Shim, Thin Solid Films 410, 8 (2002).
[43]T. M. Barnes, K. Olson, and C. A. Wolden, Applied Physics Letters 86 (2005).
[44]D. K. Hwang et al., Applied Physics Letters 86 (2005).
[45]Y. R. Ryu et al., Journal of Crystal Growth 216, 330 (2000).
[46]J. G. Lu et al., Applied Surface Science 245, 109 (2005).
[47]H. P. Myers, Introductory Solid State Physics (Taylor & Francis, London, 1997).
[48]N. F. Mott, and E. A. Davis, Electronic processes in non-crystalline materials (Clarendon Press, Oxford, 1979).
[49]http://140.116.176.21/www/index.htm,成功大學微奈米中心儀器使用手冊.
[50]L. Reimer, Transmission electron microscopy :physics of image formation and microanalysis (Springer, New York :, 1997).
[51]B. D. Cullity, and S. R. Stock, Elements of x-ray diffraction (Prentice Hall, New Jersey, 2001).
[52]R. C. Wang et al., Applied Physics Letters 87 (2005).
[53]Courtesy of SII Nanotechnology Inc.
[54]D. B. Williams, and C. B. Carter, Transmission Electron Microscopy (Plenum Press, London, 1996).
[55]ASM Handbook, Vol. 3, Alloy Phase Diagrams, pp.25-383.
[56]L. Vitos et al., Surface Science 411, 186 (1998).
[57]P. B. G. M. Arnstein, and R. W. Armstrong Acta Crystallographica Section A 28, 344 (1972).
[58]C. W. Chen et al., Applied Physics Letters 88 (2006).
[59]A. S. Walton et al., Nanotechnology 18 (2007).
[60]M. A. E. H. M. EL SHABASY, M. A. AHMED, Journal of Materials science 25, 585 (1990).