簡易檢索 / 詳目顯示

研究生: 李詠婕
Li, Yung-Chieh
論文名稱: 石墨烯於微結構銅基板之熱管理設計與製作
Thermal Management Design and Fabrication of Graphene on Microstructured Copper Substrates
指導教授: 涂維珍
Tu, Wei-Chen
學位類別: 碩士
Master
系所名稱: 智慧半導體及永續製造學院 - 智慧與永續製造學位學程
Program on Smart and Sustainable Manufacturing
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 185
中文關鍵詞: 石墨烯熱管理微結構散熱效能尺寸效應
外文關鍵詞: Graphene, Thermal Management, Microstructure, Heat Dissipation Performance, Size Effect
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著高功率與高整合度電子元件之快速發展,元件運作過程中所產生之熱量若無法有效散除,將導致效能衰退與可靠度下降,因此熱管理技術成為關鍵課題之一。銅因具備高熱導率而被廣泛應用於散熱基板,而透過微結構設計可進一步調控其熱傳行為;此外,石墨烯因具備優異的面內熱導特性,亦被視為潛力材料之一。
    本研究以微結構銅基板為基礎,探討結合石墨烯後對其熱管理效能之影響。研究中設計並比較不同幾何形狀與特徵尺寸之微結構陣列,包括圓形、正方形與菱形結構,於固定間距條件下分析其熱傳行為差異。透過高溫冷卻過程中的溫度分佈與終態溫度變化,評估微結構尺寸效應及幾何形貌對散熱表現之影響,並進一步比較有無石墨烯塗佈時之熱管理差異。
    研究結果顯示,微結構幾何形狀與特徵尺寸皆對銅基板之熱管理行為具有顯著影響,在特定尺寸條件下可有效促進熱擴散並降低最終溫度。此外,石墨烯之引入可進一步改善熱通量分佈,使熱傳路徑更為均勻,提升整體散熱效能。綜合而言,本研究證實透過微結構設計結合石墨烯材料,能有效提升銅基板之被動熱管理表現,並可作為未來高功率電子元件散熱設計之參考依據。

    With the rapid development of high-power and highly integrated electronic devices, the heat generated during device operation, if not effectively dissipated, can lead to performance degradation and reduced reliability. Consequently, thermal management has become one of the critical challenges in electronic system design. Copper is widely used as a heat dissipation substrate due to its high thermal conductivity, and its heat transfer behavior can be further regulated through microstructural design. In addition, graphene, owing to its exceptional in-plane thermal conductivity, has been regarded as a promising material for thermal management applications.
    In this study, microstructured copper substrates were employed to investigate the effect of incorporating graphene on thermal management performance. Microstructure arrays with different geometric shapes and characteristic sizes, including circular, square, and diamond configurations, were designed and compared under a fixed spacing condition to analyze their heat transfer behaviors. The effects of microstructure size and geometric morphology on heat dissipation performance were evaluated through temperature distribution and final steady-state temperature during high-temperature cooling processes. Furthermore, the thermal management performance with and without graphene coating was systematically compared.
    The results indicate that both the geometric shape and characteristic size of the microstructures have a significant influence on the thermal management behavior of copper substrates. Under specific size conditions, microstructured designs can effectively enhance heat spreading and reduce the final temperature. Moreover, the introduction of graphene further improves heat flux distribution, leading to more uniform heat transfer paths and enhanced overall heat dissipation performance. Overall, this study demonstrates that the integration of microstructural design with graphene materials can effectively improve the passive thermal management performance of copper substrates, providing valuable insights for the thermal design of future high-power electronic devices.

    中文摘要 I 誌謝 XIV 目錄 XV 表目錄 XX 圖目錄 XXII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 原理 5 2-1 石墨烯薄膜之結構特性與熱傳行為基礎 5 2-1-1 石墨烯之起源、晶體結構與基本物理特性 5 2-1-2 石墨烯的熱傳導特性 7 2-1-3 石墨烯在散熱與熱管理領域之應用 14 2-2 石墨烯的製備方法 17 2-2-1 機械撥離法 19 2-2-2 化學氣相沉積法(CVD) 22 2-2-3 碳化矽上外延生長法 26 2-2-4 旋轉塗佈法 29 2-3 微結構設計對散熱行為之影響機制 30 2-3-1 微結構對熱傳機制之基本影響 30 2-3-2 幾何形狀對熱流分佈與散熱行為之影響 33 2-3-3 微結構尺寸變化對散熱效能之影響 37 2-4 熱傳分析理論與紅外線熱像量測原理 39 2-4-1 熱傳基本理論與分析指標定義 41 2-4-2 紅外線熱像儀量測原理與特性 42 2-4-3 非接觸式溫度量測之限制與誤差來源 43 2-5 數值模擬於熱管理研究之分析原理 44 2-5-1 數值熱傳分析之基本概念與幾何建模角色 45 2-5-2 邊界條件與初始條件於熱模擬中之物理意義 47 2-5-3 數值模擬於熱管理研究中的優勢與限制 48 第三章 研究方法與數值模擬模型 49 3-1 實驗化學藥品及材料 49 3-2 實驗儀器 49 3-2-1 超音波震盪器 49 3-2-2 秤重天平 50 3-2-3 微量滴管 50 3-2-4 旋轉塗佈儀 50 3-2-5 光學顯微鏡(OM) 51 3-2-6 拉曼光譜儀 52 3-2-7 熱場發射掃描式電子顯微鏡(FE-SEM) 52 3-2-8 紅外線熱像儀(IR) 53 3-2-9 Hotplate stirrer 54 3-2-10 Light Conversion CARBIDE 工業級飛秒雷射器 54 3-3 實驗步驟 55 3-3-1 石墨烯溶液配製與濃度選擇 55 3-3-2 銅基板預處理 57 3-3-3 微結構銅基板製作 58 3-3-4 石墨烯旋轉塗佈製程 59 3-4 物理模型與幾何定義 59 3-4-1 微結構形狀與空間排列定義 63 3-4-2 幾何參數設定與變因規劃 64 3-5 數值模擬理論與方程式 67 3-5-1 質量與動量守恆方程式 68 3-5-2 能量守恆方程式 70 3-5-3 石墨烯界面等效導熱模型 71 3-6 網格設定與品質評估 72 3-7 邊界條件與參數設定 74 3-7-1 幾何參數設定與邊界條件 74 3-7-2 材料物理性質 76 3-8 數值求解演算法與運算架構 77 第四章 結果與討論 79 4-1 前言 79 4-2 微結構設計對散熱效能之基礎分析(無石墨烯) 81 4-2-1 菱形陣列間距對熱阻之影響趨勢 81 4-2-2 圓形陣列間距對熱阻之影響趨勢 84 4-2-3 正方形陣列間距對熱阻之影響趨勢 87 4-2-4 不同微結構設計對散熱之影響 90 4-3 石墨烯輔助微結構陣列之散熱效能提升分析 93 4-3-1 菱形陣列間距對熱阻之影響趨勢 93 4-3-2 圓形陣列間距對熱阻之影響趨勢 97 4-3-3 正方形陣列間距對熱阻之影響趨勢 100 4-4 石墨烯塗層前後之溫度分佈均勻性比較 104 4-5 冷卻動態時間常數 τ 之分析 110 4-6 相對散熱提升量ΔT_end與百分比改善率%Improvement 115 4-7 石墨烯對局部熱集中(Hot spot)之緩解機制 120 4-8 微結構與石墨烯之協同作用探討 122 4-9 數值結果驗證比對 124 4-9-1 微結構銅基板之表面形貌與尺寸量測(SEM) 126 4-9-2 石墨烯旋轉塗佈前後之表面形貌變化分析(SEM) 128 4-9-3 石墨烯塗佈成功性之拉曼光譜驗證(Raman) 131 4-9-4 石墨烯導入後之散熱行為實驗量測(IR 熱像儀) 134 4-9-5 實驗結果與數值模擬趨勢之綜合比較與討論 138 第五章 結論及未來研究方向 142 參考文獻 146

    [1] Banerjee, S., Sardar, M., & Gayathri, N. (2006). Enhanced conductivity in graphene layers and at their edges. Applied Physics Letters, 88(6), 061915..
    [2] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.
    [3] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
    [4] Kumar, K. (2018). An overview on the importance of chemical vapour deposition technique for graphene synthesis. *Advanced Science, Engineering and Medicine, 10*(7),p.2
    [5] Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902–907.
    [6] Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 10(8), 569–581.Wang, X., Zhi, L., & Müllen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano letters, 8(1), 323-327.
    [7] Nika, D. L., & Balandin, A. A. (2012). Two-dimensional phonon transport in graphene. Journal of Physics: Condensed Matter, 24(23), 233203.
    [8] Ghosh, S., Bao, W., Nika, D. L., Subrina, S., Pokatilov, E. P., Lau, C. N., & Balandin, A. A. (2010). Dimensional crossover of thermal transitions in graphene layers. Nature Materials, 9(7), 555–558.
    [9] Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 10(8), 569–581.
    [10] Nika, D. L., & Balandin, A. A. (2012). Two-dimensional phonon transport in graphene. Journal of Physics: Condensed Matter, 24(23), 233203.
    [11] Pop, E., Varshney, V., & Roy, A. K. (2012). Thermal properties of graphene: Fundamentals and applications. MRS Bulletin, 37(12), 1273–1281.
    [12] Swartz, E. T., & Pohl, R. O. (1989). Thermal boundary resistance. Reviews of Modern Physics, 61(3), 605–668.
    [13] Malekpour, H., & Balandin, A. A. (2018). Phonon transport in graphene: Scattering by defects and boundary effects. Journal of Applied Physics, 124(11), 110901.
    [14] Wu, Y., & Liu, J. (2021). A review of graphene-based films for heat dissipation.
    [15] Lindsay, L., Li, W., Carrete, J., Mingo, N., Broido, D. A., & Reinecke, T. L. (2014). Phonon thermal transport in strained and unstrained graphene from first principles. Physical Review B, 89(15), 155426.
    [16] Sang, M., Shin, J., Kim, K., & Yu, K. J. (2019). Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials, 9(3), 374.
    [17] Seol, J. H., Jo, I., Moore, A. L., Lindsay, L., Aitken, Z. H., Pettes, M. T., ... & Shi, L. (2010). Two-dimensional phonon transport in supported graphene. Science, 328(5975), 213–216.
    [18] Wu, R., & Zhu, R.-Z. (2021). Filling the gap: Thermal properties and device applications of graphene. Science China Information Sciences, 64(4), 140401.
    [19] Yan, Z., Liu, G., Khan, J. M., & Balandin, A. A. (2012). Graphene quilts for thermal management of high-power GaN transistors. Nature Communications, 3(1), 827.
    [20] Chen, S., Brown, L., Levendorf, M., Cai, W., Ju, S. Y., Edgeworth, J., ... & Ruoff, R. S. (2011). Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano, 5(2), 1321–1327.
    [21] Tiryaki, A. A. S. (2013). The Electronic Band Structure of Graphene and Carbon Nanotubes (Doctoral dissertation).
    [22] Wong, H. S. P., Mitra, S., Akinwande, D., Beasley, C., Chai, Y., Chen, H. Y., ... & Zhang, J. (2011, December). Carbon nanotube electronics-materials, devices, circuits, design, modeling, and performance projection. In 2011 International Electron Devices Meeting (pp. 23-1). IEEE.
    [23] Cui, W., Du, G., Zhang, Y., & Zhao, J. (2019). Synergetic thermal management of micro-structured copper surfaces with graphene coatings. International Journal of Heat and Mass Transfer, 132, 1114–1122.
    [24] Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., ... & Hong, B. H. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5(8), 574–578.
    [25] Bhuyan, M. S. A., Uddin, M. N., Islam, M. M., Bipasha, F. A., & Hossain, S. S. (2016). Synthesis of graphene. International Nano Letters, 6(2), 65-83.圖2-8
    [26] Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217–224.
    [27] Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., ... & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558–1565.
    [28] Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., ... & Ruoff, R. S. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312–1314.
    [29] Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., ... & De Heer, W. A. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312(5777), 1191–1196.
    [30] Yi, M., & Shen, Z. (2015). A review on mechanical exfoliation of graphene and graphene-based multilayer materials. Journal of Materials Chemistry A, 3(22), 11700–11715.
    [31] Sun, B., et al. (2021). Synthesis of wafer-scale graphene with chemical vapor deposition for electronic device applications. Advanced Materials Technologies, 6(7), 2000744.
    [32] Bhuyan, M. S. A., Uddin, M. N., Islam, M. M., Bipasha, F. A., & Hossain, S. S. (2016). Synthesis of graphene. International Nano Letters, 6(2), 65-83.
    [33] Blake, P., Hill, E. W., Castro Neto, A. H., Novoselov, K. S., Jiang, D., Yang, R., ... & Geim, A. K. (2007). Making graphene visible. Applied Physics Letters, 91(6), 063124.
    [34] Mayorov, A. S., Gorbachev, R. V., Morozov, S. V., Britnell, L., Jalil, R., Ponomarenko, L. A., ... & Geim, A. K. (2011). Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters, 11(6), 2396–2399.
    [35] Huang, Y., Pan, S. T., & Pan, N. (2009). Mechanical exfoliation and characterization of various graphene nanostructures. Diamond and Related Materials, 18(2-3), 481–485.
    [36] Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8(4), 235–246.
    [37] Tromp, R. M., & Hannon, J. B. (2009). Thermodynamics and kinetics of graphene growth on SiC(0001). Physical Review Letters, 102(10), 106104.
    [38] Kong, W., Kum, H., Kong, S. H., Paik, J., Chen, Y., & Kim, J. (2019). Graphene as a release layer for the manufacturing of flexible devices. Nature Nanotechnology, 14(10), 927-938.
    [39] Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y. P., & Pei, S. S. (2008). Graphene sheets and dot arrays exposed by helium ion beam. Applied Physics Letters, 93(11), 113103.
    [40] De Arco, L. G., Zhang, Y., Schlenker, C. W., Ryu, K., Thompson, M. E., & Zhou, C. (2010). Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaic applications. ACS Nano, 4(5), 2865–2873.
    [41] Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., ... & Kong, J. (2009). Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9(1), 30–35.
    [42] Zhang, Y., Zhang, L., & Zhou, C. (2013). Review of chemical vapor deposition of graphene and related applications. Accounts of Chemical Research, 46(10), 2329–2339.
    [43] Bhaviripudi, S., Jia, X., Dresselhaus, M. S., & Kong, J. (2010). Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Letters, 10(10), 4128-4135.
    [44] Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., ... & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706-710.
    [45] Bhuyan, M. S. A., Uddin, M. N., Islam, M. M., Bipasha, F. A., & Hossain, S. S. (2016). Synthesis of graphene. Crystals, 6(2), 65.
    [46] Zhang, L., & Peng, Z. (2017). Plasma-enhanced chemical vapor deposition of graphene: A review. Journal of Materials Science & Technology, 33(9), 903-912.
    [47] Li, X., Magnuson, C. W., Venugopal, A., An, J., Suk, J. W., Han, B., ... & Ruoff, R. S. (2010). Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Letters, 10(11), 4328-4334.
    [48] Vlassiouk, I., Regmi, M., Fulvio, P., Dai, S., Datskos, P., Eres, G., & Smirnov, S. (2011). Role of hydrogen in chemical vapor deposition of graphene on copper. ACS Nano, 5(7), 6069-6076.
    [49] Al-Khedher, M. A. (2018). Synthesis of graphene by chemical vapor deposition (CVD) [Review]. Sensors, 18(12), 4383.
    [50] Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Özyilmaz, B., Ahn, J. H., Hong, B. H., & Iijima, S. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nano Letters, 10(6), 2103–2108.
    [51] Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8(4), 235–246.
    [52] Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., ... & Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9-10), 351–355.
    [53] Zurutuza, A., & Claudio, R. (2014). Challenges for graphene-based technologies. Nature Nanotechnology, 9(10), 730–734.
    [54] Lin, J.-H., Chen, J.-H., Tseng, P.-A., & Lou, C.-W. (2022). Influence of Different Preparation Methods on the Properties of Graphene/Thermoplastic Polyurethane Conductive Composites. Materials, 15(20), 7228.
    [55] Brodie, B. C. (1859). On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 149, 249–259.
    [56] Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339–1339.
    [57] Lerf, A., He, H., Riedl, T., Forrester, M., & Klinowski, J. (1998). Hydration of graphitic oxide and adsorption in the interlayer space. Methods in Enzymology, 102(13), 4477–4482.
    [58] Kim, F., Cote, L. J., & Huang, J. (2012). Graphene oxide: Surface activity and two-dimensional assembly. Advanced Materials, 24(3), 403–409.
    [59] Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved Hummers' method for the preparation of graphene oxide. ACS Nano, 4(8), 4806–4814.
    [60] Zhang, Y., Zhang, L., & Zhou, C. (2013). Review of chemical vapor deposition of graphene and related applications. Accounts of Chemical Research, 46(10), 2329-2339.
    [61] Chu, K. J., Yu, M., & Kim, M. S. (2010). Heat transfer characteristics of micro-pillar arrays with different geometric parameters. International Journal of Heat and Mass Transfer, 53(19-20), 4153-4161.
    [62] Vafai, K. (2015). Handbook of thermal science and engineering. Springer.
    [63] Yovanovich, M. M. (2005). Heat spreading resistance theory for multi-layer structures. ASME Journal of Heat Transfer, 127(8), 812-820.
    [64] Ong, K. S. (2016).Thermal management of LED with vapor chamber and thermoelectric cooling.In Proceedings of the 2016 IEEE 37th International Electronics Manufacturing Technology (IEMT) & 18th Electronics Materials and Packaging (EMAP) Conference.
    [65] Tuckerman, D. B., & Pease, R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron Device Letters, 2(5), 126-129.
    [66] Moore, A. L., & Shi, L. (2014). Emerging challenges and materials for thermal management of electronics. Materials Today, 17(4), 163-174.
    [67] Li, J. H., & Cheng, P. (2002). The effect of microstructures on the transient heat conduction. International Journal of Heat and Mass Transfer, 45(13), 2643-2648.
    [68] Sobhan, C. B., & Peterson, G. P. (2001). A review and comparative study of the investigations on heat transfer in microchannels. Microscale Thermophysical Engineering, 5(2), 73-107.
    [69] Steinke, M. E., & Kandlikar, S. G. (2006). Review of single-phase heat transfer in microchannels. Heat Transfer Engineering, 27(9), 5-11.
    [70] Bovatsek, J., Tamhankar, A., Patel, R. S., Haight, R., & Pan, A. (2010). Laser ablation of thin films for solar cell and flexible electronics manufacturing. Journal of Laser Micro/Nanoengineering, 5(2), 158-163.
    [71] SemiVision. (2025, July 22). Beyond TIM: Microchannel Architectures for Advanced Thermal Management. Substack.
    [72] Marconnet, A. M., Panzer, M. A., & Goodson, K. E. (2013). Thermal conduction phenomena in carbon nanotube arrays. Reviews of Modern Physics, 85(3), 1295–1319.
    [73] Yovanovich, M. M., & Marotta, E. E. (2003). Thermal spreading and contact resistances. Heat Transfer Handbook, 261–393.
    [74] Saleh, M. S.,Polycrystalline micropillars by a novel 3-D printing method and their behavior under compressive loads,Scripta Materialia, 149, 6–10 (2018).
    [75] Qu, W., & Mudawar, I. (2002). Analysis of three-dimensional heat transfer in micro-channel heat sinks. International Journal of Heat and Mass Transfer, 45(19), 3973–3985.
    [76] Zhou, S., Li, G., Li, S., & Li, H. (2022). Fabrication of hierarchical micro-nano structures on silicon surfaces by femtosecond laser for enhanced pool boiling heat transfer. Micromachines, 13(7), 1077.
    [77] Wang, H., Chen, L., & Xi, Z. (2021). Experimental and numerical study on the heat transfer performance of micro-pillar heat sinks. Micromachines, 12(9), 1114.
    [78] Wang, H., Chen, L., & Xi, Z. (2021). Experimental and numerical study on the heat transfer performance of micro-pillar heat sinks. Micromachines, 12(9), 1114.
    [79] Wang, H., Chen, L., & Xi, Z. (2021). Experimental and numerical study on the heat transfer performance of micro-pillar heat sinks. Micromachines, 12(9), 1114.
    [80] Siedel, S., Cioulachtjian, S., & Bonjour, J. (2008). Experimental study of bubble growth and detachment from a single artificial nucleation site and interaction between two sites. International Journal of Heat and Mass Transfer, 51(23-24), 5606-5615.
    [81] Hajji, M. A., & Boughariou, A. (2015). Infrared thermography for local heat flux and temperature measurement. Measurement, 61, 168-177.
    [82] Usamentiaga, R., Venegas, P., Guerediaga, J., Vega, L., Molleda, C., & Bulnes, F. G. (2014). Infrared thermography for temperature measurement and non-destructive testing. Sensors, 14(7), 12305-12348.
    [83] Bagavathiappan, S., Lahiri, B. B., Saravanan, T., Philip, J., & Jayakumar, T. (2013). Infrared thermography for condition monitoring – A review. Infrared Physics & Technology, 60, 35-55.
    [84] Wen, C. D., & Mudawar, I. (2006). Emissivity characteristics of roughened aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. International Journal of Heat and Mass Transfer, 49(11-12), 1977-1986.
    [85] Minkina, W., & Dudzik, S. (2009). Infrared thermography: Errors and uncertainties. John Wiley & Sons.
    [86] Tighes, P., & Eason, C. (2008). Challenges in thermal imaging of microelectronics. Microelectronics Reliability, 48(8-9), 1150-1154.
    [87] Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Luniver press.
    [88] Montgomery, D. C. (2017). Design and analysis of experiments. John Wiley & Sons.
    [89] Özisik, M. N. (1993). Heat conduction. John Wiley & Sons.
    [90] Lienhard, J. H., IV, & Lienhard, J. H., V. (2019). A heat transfer textbook. Phlogiston Press.
    [91] Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method. Pearson Education.
    [92] Sarikaya, M., & Cetin, B. (2015). Effect of substrate material on the heat transfer performance of micro-channel heat sinks. International Journal of Thermal Sciences, 92, 273-281.
    [93] Li, W., & Zhang, T. (2018). Effect of geometric parameters on the heat transfer performance of micro-pillar heat sinks. International Journal of Thermal Sciences, 134, 1-12.
    [94] Wang, Y., Lu, G. N., & Wang, J. (2021). Optimization of micro-pin-fin arrays for enhanced thermal management of high-power electronics. International Communications in Heat and Mass Transfer, 126, 105432.
    [95] Li, Z., et al. (2023). Synergistic effect of graphene coating and macro-micro-structured surface on the pool boiling heat transfer of FC-72. International Journal of Multiphase Flow, 159, 104332.
    [96] Torquato, S. (2013). Random heterogeneous materials: Microstructure and macroscopic properties. Springer Science & Business Media.
    [97] Dorfman, J. S., & Renner, M. K. (2009). Conjugate problems in convective heat transfer. CRC Press.
    [98] Anderson, J. D., & Wendt, J. (1995). Computational fluid dynamics: The basics with applications. McGraw-Hill Education.
    [99] White, F. M. (2011). Fluid mechanics. McGraw-Hill Education.
    [100] Batchelor, G. K. (2000). An introduction to fluid dynamics. Cambridge University Press.
    [101] Spiegel, E. A., & Veronis, G. (1960). On the Boussinesq approximation for a compressible fluid. The Astrophysical Journal, 131, 442-447.
    [102] Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2007). Transport phenomena. John Wiley & Sons.
    [103] Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation.
    [104] Perelman, T. L. (1961). On conjugated problems of heat transfer. International Journal of Heat and Mass Transfer, 3(4), 293-303.
    [105] Yan, Z., Liu, G., Khan, J. M., & Balandin, A. A. (2012). Graphene quilts for thermal management of high-power GaN transistors. Nature Communications, 3(1), 827.
    [106] Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation.
    [107] American Society of Mechanical Engineers. (2009). Standard for verification and validation in computational fluid dynamics and heat transfer (ASME V&V 20-2009). Author.

    QR CODE