簡易檢索 / 詳目顯示

研究生: 蔡啟南
Tsai, Chi-nan
論文名稱: 具動態規劃的高階順滑模態控制於點對點定位系統的應用
Application of Higher Order Sliding Mode Control with Dynamic Planning for Point-to-Point Positioning Systems
指導教授: 謝成
Hsieh, Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 67
中文關鍵詞: 高階順滑模態控制器摩擦力精密極限定位
外文關鍵詞: friction, higher order sliding mode control, position control
相關次數: 點閱:121下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業升級與產業自動化,對於機械精度的要求不斷地向上攀升,使得高精度機械控制成為相當重要的工業領域。高性能且超精密的機械系統,在工業應用上日益重要。因此,對於機械系統長行程、高精度表現已成為重要的研究方向,次微米 (sub-micrometer) 或奈米科技 (nanotechnology) 相關的應用更成為研究的重要指標。
    在各種影響高精度定位控制的因素中,例如,溫度,濕度,環境變動,摩擦力等等,其中又以靜摩擦力的影響為最主要的關鍵。因此,對設計者而言,必須要能解決由摩擦力所引起的各種理論與實務上的問題,適當的摩擦力補償方法便成為達到目標的決定性步驟。
    本文主要的研究目的為,高階順滑態控制器以及積分控制器在補償摩擦力的情形下針對精密極限定位性能的分析與設計,並且利用動態規劃增加高階順滑態控制器的剛性以及避免控制力的飽和。
    本文利用直驅式旋轉馬達驗證具動態規劃的高階順滑態控制器。實驗結果顯示控制律在 0.0204 kg-m2 ( 空機為0.000577 kg-m2 ) 載重情形下,可成功達到零穩態誤差以及零穩態擺動量的要求。並且符合剛性、指定範圍內載重變化的強健性以及抵抗干擾的要求。目前已經累積了數十萬次的重複成功測試。

    Modern machine tools and other precision machines, such as semiconductor manufacturing equipments and CNC machines, require high precision motion control. Because of the fast development of nanotechnology in recent years, there is an increasing demand and research interest in high precision control systems.
    Among the different disturbance sources, such as heat, humidity, environmental vibrations, friction etc, especially static friction is a major challenge in high precision control. Hence, friction compensation represents a crucial consideration for the designers, who must solve various theoretical and practical problems, to achieve high precision or even precision-limit positioning (PLP) performance.
    In this study, the compensation of friction by using HSMC and an extra integral controller is analyzed to achieve PLP. Moreover, the dynamic planning is designed to improve rigidity and avoid saturation of control effort. HSMC with dynamic planning (HSMCDP) is verified by using a direct drive DC torque motor with encoder of 1,620,000 counts/rev resolution.
    The experimental results show that HSMCDP can achieve zero steady state error and zero steady state vibration as the 0.0204 kg-m2 loading (un-weighting is 0.000577 kg-m2) mounted on the motor. Moreover, it also shows high rigidity, robustness to variation loading in the designated range and good disturbance rejection. This system was verified successfully with PTP positioning more than hundred thousand times.

    摘要 ................................................................................................................. i ABSTRACT ................................................................................................... ii 致謝 ............................................................................................................... iii CONTENTS .................................................................................................. iv LIST OF TABLES ........................................................................................ vi LIST OF FIGURES ..................................................................................... vii LIST OF SYMBOLS ..................................................................................... x Chapter1 Introduction ............................................................................... 1 1.1 Motivation .......................................................................................... 1 1.2 Objectives .......................................................................................... 8 1.3 Outline of thesis ............................................................................... 10 Chapter 2 Control Law Design ................................................................ 11 2.1 Control law design of HSMC .......................................................... 11 2.2 Stability criterion in slip phase ........................................................ 15 2.3 Stability criterion in pre-sliding phase ............................................. 16 2.4 Adding an integral control ............................................................... 17 2.5 Switching criterion ........................................................................... 18 Chapter 3 Design of Motion Planning .................................................... 20 3.1 Off-line trajectory planning ............................................................. 20 3.2 Dynamic planning ............................................................................ 24 3.3 Estimation of acceleration ............................................................... 27 3.4 Estimation of jerk ............................................................................ 28 Chapter 4 Modeling of Experimental System ........................................ 29 4.1 Description of experimental system ................................................ 29 4.2 Limitation of angular velocity ......................................................... 32 4.3 Parameter identification ................................................................... 33 4.3.1 Identification of experimental system .................................... 33 4.3.2 Identification of static friction parameter ............................... 39 4.4 Estimation of switching criterion ..................................................... 44 4.4.1 Estimation of sticking velocity ............................................... 44 4.4.2 Estimation of maximum elongation of nonlinear spring ........ 46 4.5 Design of control parameter ............................................................ 47 4.6 Analysis of D/A converter ............................................................... 48 Chapter 5 Experimental Results and Discussions ................................. 49 5.1 Analysis on steady state response .................................................... 49 5.2 Analysis on transient response ......................................................... 52 5.3 Analysis on disturbance rejection and rigidity ................................ 55 5.4 Analysis on variation loading ...........................................................58 Chapter 6 Conclusions and Suggestions ................................................. 63 Reference ...................................................................................................... 65 Vita ................................................................................................................ 67

    [1] P.R. Dahl, “Solid friction damping of mechanical vibrations,” AIAA, 12, 1675-1682, 1976.
    [2] D. Karnopp, “Computer simulation of stick-slip friction in mechanical dynamic systems,” Transactions of the ASME Journal of Dynamic Systems, Measurement, and Control, 107, 100-103, 1985.
    [3] B. Armstrong-Helouvry, P. Dupont, and C. Canudus de Wit, “A survey of models, analysis tools and compensation methods for the control of machines with friction,” Automatica, 30(7), 1083-1138, 1994.
    [4] C. Canudas de Wit, H. Olsson, K. Astrom, and P. Lischinsky, “A new model for control of systems with friction,” IEEE Trans. on Automatic Control, 40(3), 419–425, 1995.
    [5] C. Hsieh and Y. C. Pan, “Dynamic behavior and modeling of the pre-sliding static friction,” Wear, 242, 1-17, 2000.
    [6] S. J. Huang and S. S. Wang, “Mechatronics and control of a long-range nanometer positioning servomechanism,” Mechatronics, 19(1), 14-28, 2009.
    [7] B. Dandil, “Fuzzy neural network IP controller for robust position control of induction motor drive,” Expert Systems with Applications, 36(3), 4528-4534, 2009.
    [8] F. J. Lin and Y. C. Hung, “FPGA-based Elman neural network control system for linear ultrasonic motor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56(1), 101-113, 2009.
    [9] M. R. Popovic, D. M. Gorinevski and A. A. Goldenberg., “High-precision positioning of a mechanism with nonlinear friction using a fuzzy logic pulse controller,” IEEE Trans Control Syst Technol, 8(1), 151-158, 2000.
    [10] T. N. Minh, K. Ohishi, M. Takata, S. Hashimoto, K. Kosaka, H. Kubota, and T. Ohmi, “Adaptive Friction Compensation Design for Submicrometer Positioning of High Precision Stager,” Proceedings of the 2007 4th IEEE International Conference on Mechatronics, 2007.
    [11] Y. Zhu and P. R. Pagilla, “Static and dynamic friction compensation in trajectory tracking control of robots,” Proceedings of IEEE International Conference on Robotics and Automation, 3, 2644-2649, 2002.
    [12] T. Y. Lin, Y. C. Pan, and C. Hsieh, “Precision-limit positioning of direct drive systems with the existence of friction,” Control Engineering Practice, 11(3), 233-244, 2003.
    [13] J.J. E. Slotine and W. Li, Applied nonlinear control, Prentice-Hall, 1991.
    [14] S. Khan and A. Sabanoviç, “Discrete-time sliding mode control of high precision linear drive using frictional model,” International Workshop on Advanced Motion Control, AMC, 739-743, 2006.
    [15] M. I. Bayindir, H. Can, Z. H. Akpolat, M. Ozdemir and E. Akin, “Robust quasi-time-optimal discrete-time sliding mode control of a servomechanism,” Electric Power Components and Systems, 35(8), 885-905, 2007.
    [16] M. J. Jang, K. C. Lin, and C. L. Chen, “Modeling and positioning control of a ball screw driven stage,” Precision Engineering, 28(4), 483-495, 2004.

    下載圖示 校內:立即公開
    校外:2009-07-22公開
    QR CODE