簡易檢索 / 詳目顯示

研究生: 蘇柏仁
Su, Po-Jen
論文名稱: 應用殘差修正法於非傅立葉熱傳及熱彈性問題
Application of Residual Correction Method on Non-Fourier Heat Conduction and Thermoelasticity Problems
指導教授: 陳朝光
Chen, Cha’o-Kung
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 147
中文關鍵詞: 最大值原理有限差分法殘差修正法非傅立葉熱傳熱彈性熱慣性
外文關鍵詞: maximum principle, finite different method, residual correction method, non-Fourier heat conduction, thermoelasticity, thermal inertia
相關次數: 點閱:184下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在科學研究及工程應用上,經常遇到各式各樣定解問題;即在已知的初始值條件或邊界條件下,求解問題的統御方程式。這些統御方程式,不僅有微分方程式,亦有積分方程式;既有線性方程式,也有非線性方程式;既有單一的方程式,也有耦合的方程式。然而,目前關於微分方程式或積分方程式的研究,在較複雜邊界問題中能得到精確解者仍極為少數。因此在某些問題的求解上,往往只能透過近似解來實現。本文使用的殘差修正法(Residual Correction Method)就是諸多近似方法中之一種。
    隨著科技的進步,在雷射熱源或微波的應用上,往往牽涉極短時間、極高頻率、或非常高溫度梯度的情形,此時非傅立葉熱傳變得愈來愈引人注目。基於微分方程最大值原理的觀念,在本文中,分別應用殘差修正法結合有限差分法,求解具有球面等向性的連續體之非傅立葉熱傳及熱彈性問題的較大近似解及較小近似解。在微分方程式最大值原理下,殘差關於解之單調性可被推論出,而本研究所探討之殘差修正法恰為一建構於此殘差與解單調關係上之數值方法。數值求解以有限差分法來離散微分方程式,然後配合本文所提之「殘差修正法」在離散的格點上加入殘差修正量,使得原本複雜的不等式拘束數學規劃(mathematical programming)問題得以轉換成簡單的等式迭代問題。
    數值結果發現,本方法在修正過程中具有將較大與較小近似解修正成大致對稱於正確解兩側的特性,因此發現即使在格點數相當少的情況下所得的平均近似解依然相當接近正確解。此外,有限差分法為早期便開始使用的數值方法,其具有運算簡單,使用於低階的方程式又具有良好的準確性,而應用殘差修正法的特點為可有效解決傳統數值方法上常無謂地增加格點數或近似函數數目之缺點,可節省計算時間與運算空間,此理論還具備誤差分析之特性,可避免不必要反覆式地數值精度測試,整體來說,殘差修正法為便利且效率高又具有良好精度的數值方法,預期將成為極具學術價值與實用性之數值研究方法。

    In scientific research and engineering applications, there exist various kinds of problems of finding solutions are faced, that is, solving governing equations of the desired problems under the given initial conditions and boundary conditions. These governing equations have a wide range of types, including either differential equations or integral equations; either linear equations or nonlinear equations; either a single equation or a set of coupled equations. However, to date, there are many investigators that still pose a challenge for solving some differential equations with complex boundary conditions by either numerical or theoretical methods. As for some problems, the analytic exact solutions are impossible to find, and only their approximate solutions can be obtained by some kinds of methods. The residual correction method (RCM) is one promising scheme of them.
    With the progress of technology, the effect of non-Fourier heat conduction becomes more and more attractive in practical engineering problems for situations involving a heat source such as laser or microwave with extremely short times or very high frequency, or very high temperature gradient. Based on the maximum principle of differential equations, this dissertation deals with application of the residual correction method in combination with the finite difference method to seek the upper and lower approximate solutions of the non-Fourier heat conduction and thermoelastic problems of a spherical region when the continuum medium pos-sesses spherically isotropic properties. Under the fundamental of the maximum principle of differential equations, the monotonicity of residual versus solution can be concluded and the residual correction method is just a numerical method which is constructed on the basis of this monotonic relation. To obtain numerical solutions, the finite difference method is utilized to discretize differential equations, followed by adoption of the “Residual Correction Method” proposed in this article to add residual correction quantity in discretized grid points to convert constraint mathematical programming problems of inequalities that were complex originally into simpler equational iteration problems.
    Numerical results show that this approach is characterized by the advantage in correcting the acquired upper and lower approximate solutions to enable them to be distributed on two sides of the exact solutions roughly in a symmetrical way, thus making the mean approximate solutions remain considerably close to the exact solutions, even if the number of calculation grid points is rather small. In addition, the finite difference method is simple to operate and has good accuracy in low-order equations. One characteristic of residual correction method is analyzing the error according to the mean value of the upper and lower approximate solutions. It can effectively deal with the defects resulting from increasing the numbers of grids or approximate functions when using traditional numerical methods. This methodology can reduce the computing time, save the memory, and promote the numerical accuracy outstandingly. Predictably, it will achieve high academic value and practicability in numerical research in the future.

    中文摘要 I Abstract III Acknowledgements V Contents VII List of Tables X List of Figures XI Nomenclature XIII 1. Introduction 1 1-1 Motivation of this dissertation 1 1-1-1 Non-Fourier heat transfer 1 1-1-2 Thermoelasticity 4 1-1-3 Residual correction method 7 1-2 Organization of this dissertation 8 2. Overview of Non-Fourier Heat Conduction and Thermoelasticity 11 2-1 Overview of heat conduction 12 2-1-1 Parabolic heat conduction model 12 2-1-2 Hyperbolic heat conduction model 15 2-1-3 Dual-phase-lag heat conduction model 17 2.2 Overview of thermoelasticity 20 2-2-1 Fundamental equations of elastic constitutive 20 2-2-2 Fundamental equations of thermoelasticity 23 2-2-3 Heat conduction and the energy equation 25 2-2-4 Generalized thermoelasticity 27 3. Mathematical Preliminaries 30 3-1 The maximum principle for differential equations 30 3-1-1 The one-dimensional maximum principle and monotonicity 32 3-1-2 Monotonicity of boundary value problems 33 3-1-3 Monotonicity of initial value problems 37 3-1-4 Monotonicity of non-linear problems 41 3-2 The maximum principle of elliptical equations 44 3-3 The maximum principle of parabolic equations 48 3-4 The maximum principle of hyperbolic equations 50 4. Procedure of Residual Correction Method Combined with Finite Difference Method 54 4-1 Finite difference method 54 4-2 Correlation between finite difference method and maximum principle for differential equations 58 4-2-1 Analysis of characteristics of the finite-difference method 59 4-2-2 Concept of residual correction method 63 4-2-3 Procedure of residual correction method 66 5. Application of Residual Correction Method on Non-Fourier Heat Transfer for Sphere with Time-Dependent Boundary Condition 71 5-1 Model description of non-Fourier heat transfer for spherical medium with time-dependent boundary condition 71 5-2 Results and discussion 74 5-3 Summary 75 6. Application of Residual Correction Method on Hyperbolic Thermalelastic Response of Spherical Medium in Rapid Transient Heat Conduction 83 6-1 Model description of hyperbolic thermoelastic response of spherical medium in rapid transient heat conduction 83 6-2 Results and discussion 89 6-3 Summary 91 7. Conclusions and Future Research 102 7-1 Conclusion 102 7-2 Future research 103 Reference 105 Appendix 117 Publication List 147

    Al-Nimr, M. A.; Alkam, M. K. (2003): Overshooting phenomenon in the hyperbolic microscopic heat conduction model. International Journal of Thermophysics, vol. 24, no. 2, pp. 577-583.
    Antaki, P. J. (1998): Solution for non-Fourier dual phase lag heat conduction in a semi-infinite slab with surface heat flux. International Journal of Heat and Mass Transfer, vol. 41, no. 14, pp. 2253-2258.
    Baeri, P.; Campisano, S. U.; Foti, G.; Rimini, E. (1979): A melting model for pulsing-laser annealing of implanted semiconductors. Journal of Applied Physics, vol. 50, no. 2, pp. 788-797.
    Banerjee, A.; Ogale, A. A.; Das, C.; Mitra, K. (2005): Temperature distribution in different materials due to short pulse laser irradiation. Heat Transfer Engineering, vol. 26, no. 8, pp. 41-49.
    Barletta, A.; Zanchini, E. (1996): Non-Fourier heat conduction in a plane slab with prescribed boundary heat flux. Heat and Mass Transfer, vol. 31, no. 6, pp. 443-450.
    Brown, J. B.; Chung, D. Y.; Matthews, P. W. (1966): Heat pulses at low temperatures. Physics Letters, vol. 21, no. 3, pp. 241-243.
    Biot, M. A. (1956): Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, vol. 27, no. 3, pp. 240-253.
    Boley, B. A.; Weiner, J. H. (1960): Theory of Thermal Stresses, John Wiley, New York.
    Bosworth, B. C. L. (1946): Thermal inductance. Nature, vol. 158, pp. 309.
    Bosworth, B. C. L. (1948): Thermal mutual inductance. Nature, vol. 161, pp. 166-167.
    Cabada, A.; Habets, P.; Lois, S. (2001): Monotone method for the Neumann problem with lower and upper solutions in the reverse order. Applied Mathematics and Computation, vol. 117, no. 1, pp. 1-14.
    Callier, F. M.; Desoer, C. A. (1978): An algebra of transfer functions for distributed linear time-invariant systems. IEEE Transactions on Circuits and Systems, vol. 25, no. 9, pp. 651-662.
    Callier, F. M.; Winkin, J. (1992): LQ-optimal control of infinite-dimensional systems by spectral factorization. Automatica, vol. 28, no. 4, pp. 757-770.
    Callier, F. M.; Dumortier, L.; Winkin, J. (1995): On the nonnegative self-adjoint solutions of the operator Riccati equation for infinite dimensional systems. Integral Equations and Operator Theory, vol. 22, no. 2, pp. 162-195.
    Cattaneo, C. (1948): Sulla Conduzione De Calore. Atti Del Seminar, Mat. Fis. Univ., Modena, vol. 3, no. 3.
    Cattaneo, C. (1958): Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée (A form of heat conduction equation which eliminates the paradox of instantaneous propagation). Comptes Rendus Hebdomadaires des Seances de L’Academie des Sciences: Series I-Mathematics, vol. 247, no. 4, pp. 431-433.
    Chandrasekharaiah, D. S. (1986): Thermoelasticity with second sound: a review. Applied Mechanics Reviews, vol. 39, no. 3, pp. 355-376.
    Chandrasekharaiah, D. S. (1998): Hyperbolic thermoelasticity: a review of recent literature. Applied Mechanics Reviews, vol. 51, no. 12, pp. 705-729.
    Chester, M. (1963): Second sound in solids. Physical Review, vol. 131, no. 5, pp. 2013-2015.
    Chang, C. L.; Lee, Z. Y. (2004): Applying the double side method to solution nonlinear pendulum problem. Applied Mathematics and Computation, vol. 149, no. 3, pp. 613-624.
    Cheng, C. Y.; Chen, C. K.; Yang, Y. T. (2009): Numerical study of residual correction method applied to non-linear heat transfer problem. CMES: Computer Modeling in Engineering & Science, vol. 44, no. 3, pp. 203-217.
    Forgac, J. M.; Angus, J. C. (1981): Solidification of metal spheres. Metallurgical Transactions B-Process Metallurgy, vol. 12, no. 2, pp 413-416.
    Fourier, J. (1955): Analytical Theory of Heat, Dover Publications, New York.
    Frankel, J. I.; Vick, B.; Özişik, M. N. (1985): Flux formulation of hyperbolic heat conduction. Journal of Applied Physics, vol. 58, no. 9, pp. 3340-3345.
    Franklin, G. F.; Powell, J. D.; Emami-Naeini, A. (1994): Feedback Control of Dynamic Systems. Addison-Wesley, Reading, MA.
    Fung, Y. C. (1965): Foundations of Solid Mechanics. Prentice Hall, Englewood Cliffs, New Jersey.
    Grabowski, P.; Callier, F. M. (2001): Boundary control systems in factor form: transfer functions and input-output maps. Integral Equations and Operator Theory, vol. 41, no. 1, pp. 1-37.
    Green, A. E.; Lindsay, K. A. (1972): Thermoelasticity. Journal of Elasticity, vol. 2, pp. 1-7.
    Hata, T. (1991a): Stress-focusing effect in a uniformly heated solid sphere. Transactions of the ASME, Journal of Applied Mechanics, vol. 58, no. 1, pp. 58-63.
    Hata, T. (1991b): Thermal shock in a hollow sphere caused by rapid uniform heating. Transactions of the ASME, Journal of Applied Mechanics, vol. 58, no. 1, pp. 64-69.
    Heidarinejad, G.; Shirmohammadi, R.; Maerefat, M. (2008): Heat wave phenomena in solids subjected to time dependent surface heat flux. Heat and Mass Transfer, vol. 44, no. 4, pp. 381-392.
    Hermann, R. P.; Grandjean, F.; Long, G. J. (2005): Einstein oscillators that impede thermal transport. American Journal of Physics, vol. 73, no. 2, pp. 110-118.
    Herwig, H.; Beckert, K. (2000): Fourier versus non-Fourier heat conduction in materials with a nonhomogeneous inner structure. Transactions of the ASME, Journal of Heat Transfer, vol. 122, no. 2, pp. 363-365.
    Hetnarski, R. B.; Ignaczak, J. (1994): Generalized thermoelasticity: response of semi-space to a short laser pulse. Journal of Thermal Stresses, vol. 17, no. 3,pp. 377-396.
    Hong, B. S. (2010): Construction of 2D isomorphism for 2D -control of Sturm-Liouville systems. Asian Journal of Control, vol. 12, no. 2, pp. 187-199.
    Hong, B. S.; Su, P. J.; Chou, C. Y.; Hung, C. I. (2011): Realization of non-Fourier phenomena in heat transfer with 2D transfer function. Applied Mathematical Modelling, vol. 35, no. 8, pp. 4031-4043.
    Hong, B. S.; Chou, C. Y. (2014): Realization of thermal inertia in frequency domain. Entropy, vol. 16, no, 2, pp. 1101-1121.
    Honner, M. (1999): Heat waves simulation. Computers & Mathematics with Applications, vol. 38, no. 9-10, pp. 233-243.
    Ichiyanagi, M. (1997): Comments on the entropy differential in extended irreversible thermodynamics. Kyoto Univ. Res. Inf. Repository, vol. 982, pp. 220-233.
    Jiang, F. M.; Liu, D. Y.; Zhou, J. H. (2002): Non-Fourier heat conduction phenomena in porous material heated by microsecond laser pulse. Microscale Thermophysical Engineering, vol. 6, no. 4, pp. 331-346.
    Joseph, D. D.; Preziosi, L. (1989): Heat waves. Reviews of Modern Physics, vol.61, no. 1, pp. 41-73.
    Kaminiski, W. (1990): Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. Transactions of the ASME, Journal of Heat Transfer, vol. 112, no. 3, pp. 555-560.
    Kobayashi, S.; Thomsen, E. G. (1965): Upper and lower solutions to axisymmetric compression and extension problems. International Journal of Mechanical Sciences, vol. 7, pp. 127-143.
    Lee, Z. Y.; Chen, C. K.; Hung, C. I. (2002): Upper and lower bounds of the solution for an elliptic plate problem using a genetic algorithm. Acta Mechanica, vol. 157, pp. 201-212.
    Lee, Z. Y. (2004): Coupled problem of thermoelasticity for multilayered spheres with time-dependent boundary conditions. Journal of Marine Science and Technology, vol. 12, no. 2, pp. 93-101.
    Liu, K. C.; Chen, H. T. (2004): Numerical analysis for the hyperbolic heat conduction problem under a pulsed surface disturbances. Applied Mathematics and Computation, vol. 159, no. 3, pp. 887-901.
    Lord, H. W.; Shulman Y. (1967): A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, vol. 15, no. 5, pp. 299-309.
    Mandrusiak, G. D. (1997): Analysis of non-Fourier conduction waves from a reciprocating heat source. Journal of Thermophysics and Heat Transfer, vol. 11, no. 1, pp. 82-89.
    Maxwell, J. C. (1867): On the dynamic theory of gases. Philosophical Transactions of the Royal Society of London, vol. 157, pp. 49-88.
    Mitra, K.; Kumar, S.; Vedavarz, A.; Moallemi, M. K. (1995): Experimental evidence of hyperbolic heat conduction in processed meat. Transactions of the ASME, Journal of Heat Transfer, vol. 117, no. 3, pp. 568-573.
    Morse, P. M.; Feshbach, H. (1953): Methods of Theoretical Physics. First Edition, McGraw-Hill, New York, pp. 165-166.
    Nernst, W. (1918): Die Theoretischen und Experimentellen Grundlagen des Neuen Warmesatzes. Knapp, Halle.
    Ni, J. H.; Chang, C. C.; Yang, Y. T.; Chen, C. K. (2011): Surface heating problems of thermal propagation in living tissue solved by differential transformation method. CMES: Computer Modeling in Engineering & Science, vol. 72, no. 1, pp. 37-51.
    Nowacki, W. (1975): Dynamic Problems of Thermoelasticity. Noordhoff, Leyden, The Netherlands.
    Nowacki, W. (1986): Thermoelasticity. Second edition, Pergamon Press, Oxford.
    Özişik, M. N.; Tzou, D. Y. (1994): On the wave theory in heat conduction. Transactions of the ASME, Journal of Heat Transfer, vol. 116, no. 3, pp. 526-535.
    Peng, H. S.; Chen, C. L.; Li, G. S. (2012): Application of residual correction method to laser heating process. International Journal of Heat and Mass Transfer, vol. 55, no. 1-3, pp. 316-324.
    Peshkov, V. (1944): Second sound in Helium II, Journal of Physics, vol. 8, pp. 381-386.
    Proter, M. H.; Weinberger, H. F. (1967): Maximum Principles in Differential Equations. Prentice-Hall.
    Pourmohamadian, H.; Tabrizi, H.B. (2007): Transient heat conduction for micro sphere. 4th WSEAS International Conference on Heat Mass Transfer, Gold Coast, Queensland, Australia, January 17-19.
    Qiu, T. Q.; Tien, C. L. (1993): Heat transfer mechanisms during short-pulse laser heating of metals. Transactions of the ASME, Journal of Heat Transfer, vol. 115, no. 4, pp. 835-841.
    Roetzel, W.; Putra, N.; Das, S. K. (2003): Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure. International Journal of Thermal Sciences, vol.42, no. 6, pp. 541-552.
    Saedodin, S.; Torabi, M. (2010): Electrical Discharge Machining (EDM) by using non-Fourier heat conduction model, Contemporary Engineering Sciences, vol. 3, no. 6, pp. 269-283.
    Sousa, R. A. D.; Rocha, A. F. D.; Schutt, D.; Haemmerich, D.; Santos, E. I. D. (2008): Experimental evidence of hyperbolic heat conduction in agar. 21º Congresso Brasileiro de Engenharia Biomédica (CBEB), Salvador-Bahia, pp. 1343-1346.
    Su, P. J.; Chen, C. K. (2013): Application of residual correction method on non-Fourier heat transfer for sphere with time-dependent boundary condition. CMES: Computer Modeling in Engineering & Science, vol. 91, no. 2, pp. 135-151.
    Taitel, Y. (1972): On the parabolic, hyperbolic and discrete formulation of the heat conduction equation, International Journal of Heat and Mass Transfer, vol. 15, no. 2, pp. 369-371.
    Tan, Z. M.; Yang, W. J. (1997): Heat transfer during asymmetrical collision of thermal waves in a thin film, International Journal of Heat and Mass Transfer, vol. 40, no. 17, pp. 3999-4006.
    Tang, D. W.; Araki, N. (1996): Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance. International Journal of Heat and Mass Transfer, vol. 39, no. 8, pp. 1585-1590.
    Tang, H. W.; Chen, C. K. and Chiang, C. Y. (2010): Application of residual correction method on error analysis of numerical solution on the non-Fourier fin problem. CMES: Computer Modeling in Engineering & Science, vol. 65, no. 1, pp. 95-106.
    Tanigawa, Y.; Takeuti, Y.; Ueshima, K. (1984): Transient thermal stresses of solid and hollow spheres with spherically isotropic thermoelastic properties. Archive of applied mechanics, vol. 54, no. 4, pp. 259-267.
    Tzou, D. Y. (1993): An engineering assessment to the relaxation time in thermal wave propagation. International Journal of Heat and Mass Transfer, vol. 36, no.7, pp. 1845-1851.
    Tzou, D. Y. (1997): Macro- to Microscale Heat Transfer: The Lagging Behavior. Taylor & Francis, Washington DC.
    Vedavarz, A.; Mitra, K.; Kumar, S.; Moallemi, M. K. (1992): Effect of hyperbolic conduction on temperature distribution in laser irradiated tissue with blood perfusion. ASME Winter Annual Meeting (Anaheim), November 8-13, Advances in Biological Heat and Mass Transfer, HTD-vol. 231, pp. 7-16.
    Vedavarz, A.; Kumar, S.; Moallemi, M. K. (1994): Significance of non-Fourier heat waves in conduction. Transactions of the ASME, Journal of Heat Transfer, vol. 116, pp. 221-224.
    Vermeersch, B.; De Mey, G. (2008): Non-Fourier thermal conduction in nano- scaled electronic structures. Analog Integrated Circuits and Signal Processing, vol. 55, no. 3, pp. 197-204.
    Vernotte, P. (1958): Les paradoxes de la théorie continue de l’équation de la chaleur. Comptes Rendus Hebdomadaires des Seances de L’Academie des Sciences, vol. 246, no. 22, pp. 3154-3155.
    Vernotte, P. (1961): Sur quelques complications possibles dans les phenomenes de conduction de la chaleur (Some possible complications in the phenomena of thermal conduction). Comptes Rendus Hebdomadaires des Seances de L’Academie des Sciences, vol. 252, no. 15, pp. 2190-2191.
    Vogl, G. W. (2003): Comprehensive theory of heat transfer in heterogeneous materials. Master’s thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
    Wang, C.C. (2006): Use residual correction method to calculate the upper and lower solutions of initial value problem. Applied Mathematics and Computation, vol. 181, no. 1, pp. 29-39.
    Wang, C. C. (2007): Use of new residual correction method to calculate upper and lower solutions of natural convection. Numerical Heat Transfer Part A: Applications, vol. 51, no. 3-4, pp. 249-265.
    Wang, C. C.; Hu, H. P. (2008): Study on monotonicity of boundary value problems of differential equations, Applied Mathematics and Computation, vol. 202, no. 1, pp. 383-394.
    Wang, C. C. (2009): Application of finite-difference residual correction method for nonlinear heat transfer problems. Numerical Heat Transfer, Part B: Fundamentals, vol. 55, no. 1, pp. 35-55.
    Wang, C. C. (2010): Applying the differential equation maximum principle with cubic spline method to determine the error bounds of forced convection problems. International Communications in Heat and Mass Transfer, vol. 37, no. 2, pp. 147-155.
    Xie, Y.; Li, F. (2010): Thermal inertia effect in an axisymmetric thermoelastic problem based on generalized thermoelasticity. IOP Conference Series: Materials Science and Engineering, vol.10, pp. 1-7. DOI: 10.1088/1757-899X/10/1/012039
    Xu, Y. S.; Guo, Z. Y. (1995): Heat wave phenomena in IC chips, International Journal of Heat and Mass Transfer, vol. 38, no. 15, pp. 2919-2922.
    Yang, H. Q. (1991): Non-Fourier effect on heat conduction during welding. International Journal of Heat and Mass Transfer, vol. 34, no. 11, pp. 2921-2924.
    Young, J. D. (1964): Linear program approach to linear differential problems. International Journal of Engineering Science, vol. 2, pp. 413-416.
    Young, N. (1992): An Introduction to Hilbert Space. Cambridge University Press, New York.
    Yu, N.; Imatani, S.; Inoue, T. (2006): Hyperbolic thermoelastic analysis due to pulsed heat input by numerical simulation. JSME International Journal Series A-Solid Mechanics and Material Engineering, vol. 49, no. 2, pp. 180-187.

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE