簡易檢索 / 詳目顯示

研究生: 龔智豪
Kung, Chih-Hao
論文名稱: 連接層於疊層式有機發光元件之作用
The function of charge-generation-layer in tandem-type organic light-emitting diodes
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 疊層式元件連接層摻雜效應有機發光二極體交流阻抗
外文關鍵詞: tandem type, connecting layer, doping effect, OLED, AC impedance
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是為了探討連接層在疊層式有機發光元件的作用,並改善連接層提升疊層元件的發光功效率,研究分成兩個方向進行,第一個是研究將molybdenum oxide(MoO3) 摻雜在N,N’-bis-(1-naphthyl)-N,N’-diphenyl-1’,1-biphenyl 4,4’- diamine(NPB)中當作疊層元件的p-type連接層,探討不同的摻雜濃度對疊層元件的影響與機制,發現由於類似半導體元件的摻雜效應使得在NPB摻雜MoO3濃度為33%的材料與純MoO3相比,材料的電洞移動率有大幅提升,因而使注入到上層元件的電洞增加,改善了整體元件的發光功效率;第二個則是在疊層式元件的連接層中,置入不同的金屬材料當作中間層,探討中間層對整體疊層元件的影響以及在連接層中的作用機制,發現使用中間層金屬後,疊層元件的驅動電壓有一個明顯的下降以及元件表現的改善,我們藉由交流阻抗分析的實驗,認為中間層對連接層的改善是因為降低了連接層界面的載子堆積與阻抗。

    The goal of my thesis is to research the function of the charge generation layer (CGL) in the tandem type organic light emitting diodes and improve the power efficient of tandem type devices.
    The investigation divides into two directions, the first one is doping molybdenum oxide (MoO3) into the N,N’-bis-(1-naphthyl)-N,N’-diphenyl-1’,1-biphenyl 4,4’- diamine(NPB) as the P-type CGL for researching the effects and mechanism of the tandem type device by doping different concentration of MoO3 into the NPB. The hole mobility of the doping P-type CGL has more better, resulting the more hole being injected into the upper device and improving the power efficient of tandem type device.
    And the second one is researching the mechanism of inserting different metal as the interlayer between the p-n junction of CGL. After using the interlayer, it decreases the turn on voltage and improves the performance of the tandem device obviously. We demonstrate that decreasing the charge accumulation and impedance on the p-n junction of CGL by AC impedance analysis results in the improvement of CGL.

    目錄 摘要.....................................................Ⅰ Abstract.................................................Ⅱ 致謝.....................................................Ⅲ 目錄.....................................................Ⅳ 表目錄...................................................Ⅶ 圖目錄...................................................Ⅷ 第一章 序論...............................................1 1-1 前言.................................................1 1-2 有機電激發光元件之發展...............................3 1-3 OLED 元件結構與運作原理..............................4 1-3-1 有機電激發光元件之結構............................4 1-3-2 有機電激發光元件之運作原理........................5 1-4 有機電電激發光元件之各層概述.........................8 1-4-1 有機發光元件各種功能層概述........................8 1-4-2 有機發光元件發光層概述...........................11 1-5色彩學與OLED 全彩技術................................13 1-5-1 基本色彩學知識...................................13 1-5-1-1 CIE 標準色度系統..............................13 1-5-1-2 色溫..........................................15 1-5-1-3 演色性指數(color rendering index, CRI)........16 1-5-2 OLED 全彩化技術.................................16 1-6 疊層式有機發光元件..................................19 1-7 究動機與研究大綱....................................23 1-7-1 研究動機.........................................23 1-7-2 研究大綱.........................................24 第二章 實驗方法與步驟....................................25 2-1 ITO 基板處理.......................................25 2-1-1 ITO 圖案化.......................................25 2-1-2 ITO 清潔與活化處理...............................29 2-2 使用材料介紹........................................30 2-3 單色光基本元件製作..................................31 2-4 疊層式有機發光元件製作..............................33 2-5 元件光電特性量測....................................36 2-6 結論................................................37 第三章 疊層式發光元件與P-type連接層之改善................38 3-1 前言................................................38 3-2 黃綠光疊層標準元件..................................38 3-3 摻雜效應於P-type連接層對疊層元件的影響..............44 3-3-1 文獻回顧.........................................44 3-3-2 摻雜濃度對電洞傳輸能力的影響.....................46 3-3-3 不同摻雜濃度的P-type連接層對疊層元件的影響.......49 3-4 摻雜效應於P-type連接層的討論........................54 3-4-1 不同摻雜濃度的P-type連接層對穿透度的影響.........55 3-4-2 不同摻雜濃度的P-type連接層對界面形貌的影響.......56 3-5 結論................................................57 第四章 中間層對疊層元件改善與運作機制....................58 4-1 前言................................................58 4-2 文獻回顧............................................59 4-3 中間層對疊層元件的影響..............................60 4-3-1 金屬銀中間層對疊層元件的影響.....................60 4-3-2 不同中間層金屬對疊層元件的影響...................66 4-4 中間層對疊層元件電容效應的影響......................69 4-4-1 電容效應分析方法.................................69 4-4-2 中間層電容效應的影響.............................71 4-4-3 中間層對元件阻抗影響與等效電路分析...............76 4-5 中間層對疊層元件作用的機制討論......................79 4-6 結論................................................80 第五章 總結與未來工作建議................................82 5-1 總結................................................82 5-2 未來工作建議........................................83 參考文獻.................................................85 自述.....................................................91

    [1] S. R. Forrest, Org. Electronics 4, 45 (2003).
    [2] J. Kido, M. Kimura, K. Nagai, Science 267, 1332 (1995).
    [3] M. Pope, H. P. Kallmann, P. Magnate, J. Chem. Phys. 38, 2042 (1963).
    [4] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 57, 913 (1987).
    [5] J. J. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature 347, 539 (1990).
    [6] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Subley, M. E. Thompson, S. R. Forrest, Nature 395, 151 (1998).
    [7] S. A. VanSlyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996).
    [8] T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast, Appl. Phys. Lett. 75, 1679 (1999).
    [9] J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, D. M. Alloway, P. A. Lee, N. R. Armstrong, Org. Electron. 2, 97 (2001).
    [10] Z. B. Deng, X. M. Ding, S.T. Lee, W.A. Gambling, Appl. Phys. Lett. 74, 2227 (1999).
    [11] L. S. Huang, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).
    [12] G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M.
    M. Morrell, B. Kippelen, N. Peyghambarian, Appl. Phys. Lett. 71, 1762 (1997).
    [13] J. Yoon, J. J. Kim, T. W. Lee, O. O. Park, Appl. Phys. Lett. 76, 2152 (2000).
    [14] J. Huang, Z. Xu, Y. Yang, Adv. Funct. Mater. 17, 1966 (2007).
    [15] T. F. Guo, F. S. Yang, Z. J. Tsai, Appl. Phys. Lett. 88, 113501 (2006).
    [16] T. F. Guo, F. S. Yang, Z. J. Tsai, Appl. Phys. Lett. 89, 053507 (2006).
    [17] 荊其誠, 焦書蘭, 喻柏林, 胡維生, “色度學” “科學出版社”出版。
    [18] A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips, Appl. Phys. Lett. 80, 6954 (1996).
    [19] A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, Appl. Phys. Lett. 64, 2486 (1994).
    [20] G. Parthasarathy, G. Gu, S. R. Forrest, Adv. Mater. 11, 907 (1999).
    [21] M.F. Lamorte, D. Abbort, Solid-State Electron. 22, 467
    (1979).
    [22] J.K. Kim, E. Hall, O. Sjolund, L.A. Coldern, Appl. Phys. Lett. 74, 3251 (1999).
    [23] X. Guo, G.D. Shen, G.H. Wang, W.J. Zhu, J.Y. Du, G. Gao, D.S. Zou, Appl. Phys. Lett. 79, 2985 (2001).
    [24] T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, J. Kido, Peoceedings of IDMC’03, p.413, Fed. 18-21, 2003, Taipei, Taiwan.
    [25] P. Chen, Q. Xue, W. Xie, Y. Duan, G. Xie, Y. Zhao, J. Hou, S. Liu, L. Zhang, B. Li, Appl. Phys. Lett. 93, 153508 (2008).
    [26] C. W. Law, K. M. Lau, M. K. Fung, M. Y. Chan, F. L. Wong, C. S. Lee, S. T. Lee, Appl. Phys. Lett. 89, 133511 (2006).
    [27] M. K. Fung, K. M. Lau, S. L. Lai, C. W. Law, M. Y. Chan, C. S. Lee, S. T. Lee, J. Appl. Phys. 104, 034509 (2008).
    [28] M. Terai, T. Tsutsui, Appl. Phys. Lett. 90, 083502 (2007).
    [29] C. C. Chang, J. F. Chen, S. W. Hwang, Chin H. Chen, Appl. Phys. Lett. 87, 253501 (2005).
    [30] L. S. Liao, K. P. Klubek, Appl. Phys. Lett. 92, 223311
    (2008).
    [31] L. S. Liao, K. P. Klubek, C. W. Tang, Appl. Phys. Lett. 84, 164 (2004).
    [32] H. Kanno, N. C. Giebink, Y. Sun, S. R. Forrest, Appl. Phys. Lett. 89, 023503 (2006).
    [33] X. Qi, M. Slootsky, S. R. Forrest, Appl. Phys. Lett. 93, 193306 (2008).
    [34] C. W. Chen, Y. J. Lu, C. C. Wu, E. H. E. Wu, C. W. Chu, Y. Yang, Appl. Phys. Lett. 87, 241121 (2005).
    [35] T. W. Lee, T. Noh, B. K. Choi, J. Kido, Appl. Phys. Lett. 92, 043301 (2008).
    [36] F. Guo, D, Ma, Appl. Phys. Lett. 87, 173510 (2005).
    [37] X. D. Gao, J. Zhou, Z. T. Xie, B. F. Ding, Y. C. Qian, X. M. Ding, X. Y. Hou, Appl. Phys. Lett. 93, 083304 (2008).
    [38] L. S. Liao, K. P. Klubek, D. L. Comfort, C. W. Tang, US 6717358 (2004).
    [39] 林銘偉,連結界面於疊層式白光有機二極體元件之研究,國立成功大學光電科學與工程研究所碩士論文 (2008)。
    [40] S. Tokito, K. Noda, Y. Taga, J. Phys. D: Appl. Phys. 29, 2750 (1996).
    [41] H. Ikeda, J. Sakata, M. Hayakawa, T. Aoyama, T. Kawakami, K. Kamata, Y. Iwaki, S. Seo, Y. Noda, R. Nomura, S. Yamazaki, SID 06 DIGEST P-185 923 (2006).
    [42] F. Wang, X. Qiao, T. Xiong, D. Ma, Org. Electron. 9, 985 (2003).
    [43] C. I. Wu, C. T. Lin, G. R. Lee, T. Y. Cho, C. C. Wu,
    T. W. Pi, J. Appl. Phys. 105, 033717 (2009).
    [44] D. J. Pinner, R. H. Friend, and N. Tessler, J. Appl. Phys. 89, 5116 (1999).
    [45] S. W. Liu, J. K. Wang, SPIE. 6333 (2006).
    [46] S. Scholz, Q. Huang, M. Thomschke, S. Olthof, P. Sebastian, K. Walzer, K. Leo, J. Appl. Phys. 104, 104502 (2008).
    [47] 李育豪,疊層式有機多層膜白光二極體,國立成功大學光電科學與工程研究所碩士論文 (2009)。
    [48] Y. Li, J. Gao, Y. Cao, A. J. Heeger, Chem. Phys. Lett. 287, 83 (1998).
    [49] V. Shrotriya, Y. Yang, J. Appl. Phys. 97, 054504 (2005).
    [50] M. N. Tsai, T. C. Chang, P.T. Liu, C. W. Ko, C. J. Chen, K. M. Lo, Thin Solid Films. 498, 244 (2006).

    下載圖示 校內:2015-02-11公開
    校外:2015-02-11公開
    QR CODE