簡易檢索 / 詳目顯示

研究生: 李侑霖
Lee, Yu-Lin
論文名稱: 具有特定結構之氮化鎵系發光二極體之研製
Fabrication of GaN Based Light Emitting Diodes (LEDs) with Specific Structures
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 99
中文關鍵詞: 氮化鎵發光二極體微米孔洞陣列特殊邊牆微奈米球二 維條紋狀金屬感應耦合電漿離子快速對流沉積抗反射保護層電流 散佈
外文關鍵詞: GaN, light-emitting diodes, microhole array, textured sidewalls, micro-/nano- spheres, 2D-metal grid, inductively coupled plasma, rapid convection deposition, anti- reflection passivation layer, current spreading
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,為了改善氮化鎵系發光二極體之光萃取效率(light extraction efficiency),吾人研製一系列具有微米孔洞陣列及特殊圖案化邊牆之複合結構式高品質氮化鎵系發光二極體。以此複合結構為主軸,進一步提出奈米材料應用及元件製程技術,其中包含利用快速對流沉積法(rapid convection deposition, RCD)製備混合式二氧化矽微奈米球抗反射保護層以及利用熱蒸鍍法(thermal evaporation)製備具有二維條紋狀銀金屬圖騰之氧化鋁鋅透明導電層(transparent conductive layer, TCL),有效提升氮化鎵系發光二極體之光電轉換效率(wall-plug efficiency, WPE)。本研究對複合結構式氮化鎵系發光二極體之光電特性,及各種特定結構之製備方式皆有深入且詳細的研究及探討。
    首先,吾人利用感應耦合電漿離子(inductively coupled plasma, ICP)蝕刻製程,製備出具有微米孔洞陣列及特殊邊牆結構之氮化鎵系發光二極體,可在不影響電性特性之下,有效降低在氮化鎵/空氣介面之內部全反射(total internal reflection, TIR),並增加光子散射(photons scattering)至元件外部的機會。相較於傳統平面式氮化鎵系發光二極體,在光輸出功率(light output power)、光通量(luminous flux)、光電轉換效率(wall-plug efficiency)及外部量子效率(external quantum efficiency)分別提升 20.9%、24.3%、20.5%及 21.3%。
    其次,延續前章,探討經由快速對流沉積法,塗佈混合式二氧化矽微
    奈米球抗反射保護層於具有微米孔洞陣列及特殊邊牆結構(45° sidewalls)之氮化鎵系發光二極體。在不影響順向電性特性下,有效抑制元件之逆向漏電流,並進一步提升元件表面粗糙度,使得光子有足夠的機會被導引至光逃離錐角(photon escape cones),降低內部全反射效應。此外,二氧化矽保護層同時具備抗反射性質,抑制元件內部產生之 Fresnel 光損失(Fresnel loss)。相較於傳統平面式氮化鎵系發光二極體,在光輸出功率、光通量、光電轉換效率及外部量子效率分別提升 50.6%、50.9%、50.6%及49.9%。
    最後,延續前章之複合結構,結合二維條紋狀銀金屬圖騰之氧化鋁鋅
    透明導電層,形成具有多重特定結構之氮化鎵系發光二極體。藉此高導電
    率特性之銀金屬,提升電流散佈能力,避免電流侷限在金屬電極周圍,形
    成不良的電流擁擠效應。由於較低的串聯電阻,此條紋狀銀金屬層的應用
    對於降低元件順向導通電壓有明顯的助益,氧化鋁鋅/氮化鎵非歐姆接觸
    之特性亦被改善。此外,銀金屬對於輸出光的高吸收率(effect of light absorption)仍無可避免,因此在本章節中,附加的二氧化矽保護層用來改善此缺點,進一步提升元件之光性性能,同時抑制逆向漏電流。相較於傳統平面式氮化鎵系發光二極體,在光輸出功率、光通量、光電轉換效率及外部量子效率分別提升 33%、34.4%,、45.3%及 33.1%。本研究論文中所研製之高品質氮化鎵系發光二極體,皆可有效提升光電轉換效率,在商業應用上相當具有潛力。

    In this thesis, in order to enhance light extraction efficiency (LEE), GaN-based light-emitting diodes (LEDs) with microhole array and textured sidewalls, which act as the core devices, are fabricated and studied. Based on the core structures (microhole array + textured sidewalls), additional applications, including a hybrid SiO2 nanoparticle/microsphere (NP/MS) passivation layer via rapid convection deposition, and a two-dimension(2D) Ag grid/AZO transparent conductive layer (TCL) via thermal evaporation are proposed to further improve wall-plug efficiency (WPE) of the studied devices. The optical and electrical properties of these multi-structured GaN-based LEDs are studied and discussed in detail. In addition, the related fabrication processes of these specific structures are also explained clearly.
    First of all, GaN-based light-emitting diodes (LEDs) with a hybrid structure, including a microhole array and textured sidewalls (45° angle and convex patterns), were fabricated and studied. The use of this hybrid structure, formed using an inductively coupled plasma (ICP) etching approach, causes reduced total internal reflection (TIR) and increased scattering probability of photons at the GaN/air interface. The designed hybrid structure provides substantial improvements in optical performance without any degradation in electrical properties. For instance, as compared with a conventional LED, Device C with the hybrid structure (45° angle sidewalls) shows remarkable improvements of 20.9%, 24.3%, 20.5%, and 21.3% in light output power (LOP), luminous fluxes, external quantum efficiency (EQE), and wall-plug efficiency (WPE), respectively, under an injection current of 200 mA.
    The characteristics of GaN-based light emitting diodes (LEDs) with a hybrid structure, incorporating a microhole array, 45° sidewalls, and an appropriate SiO2 nanoparticle (NP)/microsphere (MS) passivation layer, were fabricated and studied. The use of an SiO2 NP/MS passivation layer, formed via RCD method, causes a remarkable reduction in reverse-biased leakage current. The employment of the hybrid structure leads to substantial enhancements in optical properties without any degradation in electrical performance. Experimentally, as compared with a conventional LED (Device A), Device E shows 50.6%, 50.9%, 50.6%, and 49.9% enhancements in light output power (LOP), luminous flux, external quantum efficiency (EQE), and wall-plug efficiency (WPE), respectively, under an injection current of 200 mA. These advantages are mainly attributed to the increased scattering probability and the opportunity to find photon escape cones as well as the reduced total internal reflection (TIR) and Fresnel reflection effects.
    Finally, GaN-based light emitting diodes (LEDs) with a multiple structure, incorporating a microhole array, 45° sidewalls, an SiO2 nanoparticle (NP)/microsphere (MS) passivation layer, and a two-dimension(2D) Ag grid/AZO transparent conductive layer (TCL), were fabricated and studied. The application of Ag metal grid structure provides lower forward voltage and better current spreading ability of studied devices, due to the reduced series resistance (Rs) and conductive Ag metal. These improved electrical properties imply that the poor contact behavior between AZO/p-GaN interface could be effectively alleviate. However, the employed Ag metal pattern causes unavoidable effect of light absorption. Based on this drawback, the appropriate SiO2 NP/MS anti-reflection layer further enhanced optical performance with a lower reverse-bias leakage current, due to the significant reduction of TIR effect and Fresnel loss. As compared with Device A (conventional LED), at 200 mA, Device F shows 33%, 34.4%, 33.1%, and 45.3% enhancements in light output power (LOP), luminous flux, external quantum efficiency (EQE), and wall-plug efficiency (WPE), respectively.
    These proposed hybrid specific structures, which were employed in GaN-based LED, indeed improve the total light output performance and reduce the power consumption. Therefore, the high-performance GaN-based LEDs possesses commercial potential to compete with traditional light sources for practical applications in solid-state lighting.

    Abstract Table Captions Figure Captions Chapter 1. Introduction 1-1. History of GaN-based LEDs 1 1-2. Bottlenecks of GaN-based LEDs 3 1-3. Review of Microhole Array Structures 4 1-4. Review of Textured Sidewall Structures 5 1-5. Review of Micro-/Nano-sphere Structures 5 1-6. Thesis Organizations 6 Chapter 2. GaN LEDs with Microholes and Textured Sidewalls 2-1. Introduction 7 2-2. Fabrication Processes of LED Devices 8 2-2-1. LED Wafer Cleaning Process 8 2-2-2. Devices Structure and Fabrication 8 2-3. Experimental Results and Discussion 10 2-3-1. Surface Morphology 10 2-3-2. Electrical Properties 11 2-3-3. Optical Properties 12 2-3-4. Wall-Plug Efficiency and External Quantum Efficiency 13 2-3-5. Near-field Light Emission Mapping 14 2-3-6. Far-filed Radiation Pattern 15 2-4. Summary 15 Chapter 3. Applications of SiO2 Nanoparticles (NPs) Passivation for GaN LEDs 3-1. Introduction 17 3-1-1. Introduction 17 3-1-2. Mechanisms of Anti-reflection 18 3-1-3. Rapid Convective Deposition 20 3-2. Fabrication Processes of LED Devices 21 3-2-1. LED Wafer Cleaning Process 21 3-2-2. Fabrication of Hybrid SiO2 NP/MS Passivation Layer 21 3-2-3. Devices Structure and Fabrication 22 3-3. Experimental Results and Discussion 23 3-3-1. Surface Morphology 23 3-3-2. Transmittance 25 3-3-3. Atom Force Microscope 25 3-3-4. Electrical Properties 26 3-3-5. Optical Properties 27 3-3-6. Wall-Plug Efficiency and External Quantum Efficiency 28 3-3-7. Near-field Light Emission Mapping 29 3-3-8. Far-filed Radiation Pattern 29 3-4. Summary 30 Chapter 4. Applications of Ag Grids Based Current Spreading Layer for GaN LEDs 4-1. Introduction 32 4-2. Fabrication Processes of LED Devices 33 4-2-1. LED Wafer Cleaning Process 33 4-2-2. Devices Structure and Fabrication 33 4-3. Experimental Results and Discussion 35 4-3-1. Surface Morphology 35 4-3-2. Electrical Properties 36 4-3-3. Optical Properties 37 4-3-4. Wall-Plug Efficiency and External Quantum Efficiency 39 4-3-5. Near-field Light Emission Mapping 39 4-3-6. Far-filed Radiation Pattern 40 4-4. Summary 40 Chapter 5. Conclusion and Prospects 5-1. Conclusion 42 5-2. Prospects 44 References 46 Figures

    1. M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” IEEE J. Display Technol., vol. 3, issue. 2, pp. 160-175, 2007.
    2. M. H. Crawford, “LEDs for Solid-State Lighting: Performance Challenges and Recent Advances,” IEEE J. Select. Topics Quantum Electron., vol. 15, issue. 4, pp.1028-1040, 2009.
    3. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Select. Topics Quantum Electron., vol. 8, issue. 2, pp. 310-320, 2002.
    4. H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor‐deposited single‐crystal‐line GaN,” Appl. Phys. Lett., vol. 15, no. 10, pp. 327-329, 1969.
    5. H. P. Maruska, D. A. Stevenson, and J. I. Pankove, “Violet luminescence of Mg‐doped GaN,” Appl. Phys. Lett., vol. 22, no. 6, pp. 303-305, 1973.
    6. M. Ilegems and R. Dingle, “Luminescence of Be‐ and Mg‐doped GaN,” J. Appl. Phys., vol. 44, no. 9, pp. 4234-4235, 1973.
    7. H. P. Maruska and D. A. Stevenson, “Mechanism of light production in metal-insulator-semiconductor diodes; GaN:Mg violet light-emitting diodes,” Solid-State Electron., vol. 17, no. 11, pp. 1171-1179, 1974.
    8. S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates,” Appl. Phys. Lett., vol. 42, no. 5, pp. 427-429, 1983.
    9. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett, vol. 48, no. 5, pp. 353-355, 1986.
    10. N. Shuji, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys., vol. 30, no. 10A, p. L1705, 1991.
    11. S. Nakamura, T. Mukai, and M. Senoh, “In situ monitoring and Hall measurements of GaN grown with GaN buffer layers,” J. Appl. Phys., vol. 71, no. 11, pp. 5543-5549, 1992.
    12. A. Hiroshi, K. Masahiro, H. Kazumasa, and A. Isamu, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., vol. 28, no. 12A, p. L2112, 1989.
    13. N. Shuji, M. Takashi, S. Masayuki, and I. Naruhito, “Thermal annealing effects on P-type Mg-doped GaN films,” Jpn. J. Appl. Phys., vol. 31, no. 2B, p. L139, 1992.
    14. N. Shuji, I. Naruhito, S. Masayuki, and M. Takashi, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys., vol. 31, no. 5R, p. 1258, 1992.
    15. J. Neugebauer and C. G. Van de Walle, “Hydrogen in GaN: novel aspects of a common impurity,” Phys. Rev. Lett., vol. 75, no. 24, pp. 4452-4455, 1995.
    16. J. Neugebauer and C. G. V. d. Walle, “Role of hydrogen in doping of GaN,” Appl. Phys. Lett., vol. 68, no. 13, pp. 1829-1831, 1996.
    17. J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “Electroluminescence in GaN,” J. Luminescence, vol. 4, no. 1, pp. 63-66, 1971.
    18. N. Shuji, M. Takashi, and S. Masayuki, “High-power GaN p-n junction blue-light-emitting diodes,” Jpn. J. Appl. Phys., vol. 30, no. 12A, p. L1998, 1991.
    19. N. Shuji, S. Masayuki, and M. Takashi, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys., vol. 32, no. 1A, p. L8, 1993.
    20. S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett., vol. 64, no. 13, pp. 1687-1689, 1994.
    21. N. S. Shinbun, “pn junction DH blue LEDs with a brightness of more than 1000 mcd were developed by Nichia Chemical Industries Ltd,” Japanese newspaper press release, 1993.
    22. N. Shuji, S. Masayuki, I. Naruhito, and N. Shin-ichi, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys., vol. 34, no. 7A, p. L797, 1995.
    23. N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above,” Appl. Phys. Lett., vol. 91, no. 24, p. 243506, 2007.
    24. J. K. Park, C. H. Kim, S. H. Park, H. D. Park, and S. Y. Choi, “Application of strontium silicate yellow phosphor for white light-emitting diodes,” Appl. Phys. Lett., vol. 84, no. 10, pp. 1647-1649, 2004.
    25. J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 18-20, 2003.
    26. K. K. Kim , S. D. Lee , H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett., vol. 94, no. 7, p. 071118, 2009.
    27. K. Orita, S. Tamura, T. Takizawa, T. Ueda, M. Yuri, S. Takigawa and D. Ueda, “High-Extraction-Efficiency Blue Light-Emitting Diode Using Extended-Pitch Photonic Crystal,” Jpn. J. Appl. Phys., part 1, vol. 43, no. 8B, pp. 5809-5813, 2004.
    28. J.Q. Xi, M.F. Schubert, J.K. Kim, E.F. Schubert, M. Chen, S.Y. Lin, W. Liu, and J.A. Smart, “Optical thin- film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon., vol. 1, no. 3, pp. 176–179, 2007
    29. J. Jewell, D. Simeonov, and S.C. Huang, “Double embedded photonic crystals for extraction of guided light in light-emitting diodes,” Appl. Phys. Lett., vol. 100, no. 17, p. 171105, 2012.
    30. P. Mao, F.F. Sun, H.C. Yao, J. Chen, B. Zhao, B. Xie, M. Han, and G.H. Wang, “Extraction of light trapped due to total internal reflection using porous high refractive index nanoparticle films,” Nanoscale., vol. 6, no. 14, pp. 8177–8184, 2014.
    31. M. C. Schmidt, K. C. Kim, H. Sato, N. Fellows, H. Masui, S. Nakamura, S. P. DenBaars and J. S. Speck, “High Power and High External Efficiency m-Plane InGaN Light Emitting Diodes,” Jpn. J. Appl. Phys., part 2, vol. 46, no. 4-7, pp. L126–L128, 2007.
    32. K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys., vol. 101, no. 3, p. 033104, 2007.
    33. X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light Extraction Efficiency and Radiation Patterns of III-Nitride Light-Emitting Diodes With Colloidal Microlens Arrays With Various Aspect Ratios,” IEEE Photonics J., vol. 3, no. 3, pp. 489-499, 2011.
    34. T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, and P. M. Petroff, “Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal,” Appl. Phys. Lett., vol. 94, no. 2, p. 023101, 2009.
    35. J. H. Kang, H. G. Kim, H. K. Kim, H. Y. Kim, J. H. Ryu, P. Uthirakumar, N. Han, and C. H. Hong, “Improvement of Light Output Power in InGaN/GaN Light-Emitting Diodes with a Nanotextured GaN Surface Using Indium Tin Oxide Nanospheres,” Jpn. J. Appl. Phys., vol. 48, no. 10, p. 102104, 2009.
    36. A. Bakin, A. Behrends, A. Waag, H. J. Lugauer, A. Laubsch, and K. Streubel, “ZnO-GaN Hybrid Heterostructures as Potential Cost-Efficient LED Technology,” Proc. I.E.E.E., vol. 98, no. 7, pp. 1281-1287, 2010.
    37. H. Zhang, J. Zhu, Z. Zhu, Y. Jin, Q. Li, and G. Jin, “Surface-plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating,” Opt. Express, vol. 21, no. 11, pp. 13492-13501, 2013.
    38. Q. C. Hsu, J. J. Hsiao, T. L. Ho, and C. D. Wu, “Fabrication of photonic crystal structures on flexible organic light-emitting diodes using nanoimprint,” Microelectron. Eng, vol. 91, pp. 178-184, 2012.
    39. J. J. Wierer, Jr, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nature Photon., vol. 3, no. 3, pp. 163-169, 2009.
    40. D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett., vol. 87, no. 20, p. 203508, 2005.
    41. E. Matioli, and C. Weisbuch, “Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs,” J. Phys. D: Appl. Phys., vol. 43, no. 35, p. 354005, 2010.
    42. Q. A. Ding, K. Li, F. Kong, J. Zhao, and Q. Yue, “Improving the Vertical Light Extraction Efficiency of GaN-Based Thin-Film Flip-Chip LED With Double Embedded Photonic Crystals,” IEEE J. Quantum Electron., vol. 51, no. 2, p. 3300109, 2015.
    43. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, no. 6, pp. 855-857, 2004.
    44. H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology., vol. 16, no. 9, pp. 1844-1848, 2005.
    45. M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, “Application of Nanosphere Lithography to LED Surface Texturing and to the Fabrication of Nanorod LED Arrays,” IEEE J. Select. Topics Quantum Electron., vol. 15, no. 4, pp. 1242-1249, 2005.
    46. Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, “Optical Properties of the Partially Strain Relaxed InGaN/GaN Light-Emitting Diodes Induced by p-Type GaN Surface Texturing,” IEEE Electron Device Lett., vol. 32, no. 2, pp. 182-184, 2011.
    47. M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-Based Near-Ultraviolet and Blue-LightEmitting Diodes with High External Quantum Efficiency Using a Patterned Sapphire Substrate and a Mesh Electrode,” Jpn. J. Appl. Phys., part 2, vol. 41, no. 12B, pp. L1431-L1433, 2002.
    48. J. H. Lee, J. T. Oh, Y. C. Kim, and J. H. Lee, “Stress Reduction and Enhanced Extraction Efficiency of GaN-Based LED Grown on Cone-Shape-Patterned Sapphire,” IEEE Photon. Technol. Lett., vol. 20, no. 17-20, pp. 1563-1565, 2008.
    49. Q. Zhou, M. Xu, Q. Li, and H. Wang, “Improved Efficiency of GaN-Based Green LED by a Nano-Micro Complex Patterned Sapphire Substrate,” IEEE Photon. Technol. Lett., vol. 29, no. 12, pp. 983-986, 2017.
    50. C. C. Kao, H. C. Kuo, K. F. Yeh, J. T. Chu, W. L. Peng, H. W. Huang, T. C. Lu, and S. C. Wang, “Light–Output Enhancement of Nano-Roughened GaN Laser Lift-Off Light-Emitting Diodes Formed by ICP Dry Etching,” IEEE Photon. Technol. Lett., vol. 19, no. 9-12, pp. 849-851, 2007.
    51. H. W. Huanga, C. H. Linb, C. C. Yub, K. Y. Lee, B. D. Lee, H. C. Kuoa, S. Y. Kuoc, K. M. Leung, and S. C. Wanga, “Investigation of GaN-based vertical-injection light-emitting diodes with GaN nano-cone structure by ICP etching,” Mater. Sci. Eng., B, vol. 151, no. 3, pp. 205-209, 2008.
    52. T. H. Hsueh, J. K. Sheu, H. W. Huang, J. Y. Chu, C. C. Kao, H. C. Kuo, and S. C. Wang, “Enhancement in Light Output of InGaN-Based Microhole Array Light-Emitting Diodes,” IEEE Photon. Technol. Lett., vol. 17, no. 6, pp. 1163-1165, 2005.
    53. H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao , T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, and C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology, vol. 17, no. 12, pp. 2998-3001, 2006.
    54. D. S. Kuo, S. J. Chang, T. K. Ko, C. F. Shen, S. J. Hon, and S. C. Hung, “Nitride-Based LEDs With Phosphoric Acid Etched Undercut Sidewalls,” IEEE Photon. Technol. Lett., vol. 21, no. 8, pp. 510-512, 2009.
    55. H. W. Huang, C. F. Lai, W. C. Wang, T. C. Lu, H. C. Kuo, S. C. Wang, R. J. Tsai, and C. C. Yu, “Efficiency Enhancement of GaN-Based Power-Chip LEDs with Sidewall Roughness by Natural Lithography,” Electrochem. Solid-State Lett., vol. 10, no. 2, pp. H59-H62, 2007.
    56. C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, “Light–Output Enhancement in a Nitride-Based Light-Emitting Diode With 22° Undercut Sidewalls,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 19-21, 2005.
    57. Z. Zhang, C. Geng, Z. Hao, T. Wei, and Q. Yan, “Recent advancement on micro-/nano-spherical lens photolithography based on monolayer colloidal crystals,” Adv. Colloid Interface Sci., vol. 228, pp. 105-122, 2016.
    58. Y. C. Chang, S. C. Lu, H. C. Chung, S. M. Wang, T. D. Tsai, and T. F. Guo, “High-Throughput Nanofabrication of Infra-red and Chiral Metamaterials using Nanospherical-Lens Lithography,” Sci. Rep., vol. 3, p. 3339, 2013.
    59. C. H. Hou, S. Z. Tseng, C. H. Chan, T. J. Chen, H. T. Chien, F. L. Hsiao, H. K. Chiu, C. C. Lee, Y. L. Tsai, and C. C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett., vol. 95, no. 13, p. 133105, 2009.
    60. A. Heltzel, S. Theppakuttai, S. C. Chen, and J. R. Howell, “Surface plasmon-based nanopatterning assisted by gold nanospheres,” Nanotechnology., vol. 19, no. 2, p. 025305, 2008.
    61. N. Blondiaux, E. Scolan, G. Franc and R. Pugin, “Manufacturing of superhydrophobic surfaces combining nanosphere lithography with replication techniques,” Nanotechnology (IEEE-NANO), p. 13045987, 2012.
    62. M. K. Lee, C. L. Ho, and C. H. Fan, “High light extraction efficiency of gallium nitride light emitting diode with silicon oxide hemispherical microlens,” Appl. Phys. Lett., vol. 92, no. 6, p. 061103, 2008.
    63. Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett., vol. 91, no. 22, p. 221107, 2007.
    64. L. Y. Chen, Y. Y. Huang, C. H. Chang, Y. H. Sun, Y. W. Cheng, M. Y. Ke, C. P. Chen, and J. J. Huang, “High performance InGaN/GaN nanorod light emitting diode arrays fabricated by nanosphere lithography and chemical mechanical polishing processes,” Opt. Express, vol. 18, no. 8, pp. 7664-7669, 2010.
    65. M. A. Tsai, P. Yu, C. L. Chao, C. H. Chiu, H. C. Kuo, S. H. Lin, J. J. Huang, T. C. Lu, and S. C. Wang, “Efficiency Enhancement and Beam Shaping of GaN–InGaN Vertical-Injection Light-Emitting Diodes via High-Aspect-Ratio Nanorod Arrays,” IEEE Photon. Technol. Lett., vol. 21, no. 1-4, pp. 257-259, 2009.
    66. T. S. Kim, S. M. Kim, Y. H. Jang, and G. Y. Jung, “Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography,” Appl. Phys. Lett., vol. 91, no. 17, p. 171114, 2007.
    67. “Improving the Extraction Efficiency of Planar GaN-Based Blue Light-Emitting Diodes via Optimizing Indium Tin Oxide Nanodisc Arrays,” J. Display Technol., vol. 12, no. 12, pp. 1588-1593, 2016.
    68. Z. Z. Gu, A. Fujishima, and O. Sato, “Fabrication of high-quality opal films with controllable thickness,” Chem. Mater., vol. 14, no. 2, pp. 760-765, 2002.
    69. Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater., vol. 12, no. 10, pp. 693-713, 2000.
    70. D. Wang and H. Möhwald, “Rapid fabrication of binary colloidal crystals by stepwise spin-coating,” Adv. Mater., vol. 16, no. 3, pp. 244-247, 2004.
    71. F. García-Santamaría, H. T. Miyazaki, A. Urquía, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. López, “Nanorobotic manipulation of microspheres for on-chip diamond architectures,” Adv. Mater., vol. 14, no. 16, pp. 1144-1147, 2002.
    72. X. H. Li, P. Zhu, G. Liu, J. Zhang, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol., vol. 9, no. 5, pp. 324-332, 2013.
    73. Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express, vol. 17, no. 16, pp. 13747-13757, 2009.
    74. P. Zhao, X. Jiao, and H. Zhao, “Analysis of light extraction efficiency enhancement for InGaN quantum wells light-emitting diodes with microspheres,” IEEE Energytech, pp. 1-6, 2012
    75. J. Y. Cho, K. J. Byeon, and H. Lee, “Forming the graded-refractive-index antireflection layers on light-emitting diodes to enhance the light extraction,” Opt. Lett., vol. 36, no. 16, pp. 3203-3205, 2011.
    76. C. Y. Fang, Y. L. Liu, Y. C. Lee, H. L. Chen, D. H. Wan, and C. C. Yu, “Nanoparticle Stacks with Graded Refractive Indices Enhance the Omnidirectional Light Harvesting of Solar Cells and the Light Extraction of Light-Emitting Diodes,” Adv. Funct. Mater., vol. 23, no. 11, pp. 1412-1421, 2013.
    77. T. Mukai, M. Yamada, and S. Nakamura “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys., vol. 38, pp. 3976–3981, 1999.
    78. M. Koike, N. Shibata, H. Kato, and Y. Takahashi, “Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 2, pp. 271–277, Mar./Apr. 2002.
    79. J. Zhu, H. Zhang, Z. Zhu, Q. Li, and G. Jin,“Surface-plasmon-enhanced GaN-LED based on the multilayered rectangular nano-grating,” Opt.Commun., vol. 322, pp. 66–72, Jul. 2014.
    80. Y. C. Chang, J. K. Liou, and W. C. Liu, “Improved light extraction efficiency of a high-power GaN-based light-emitting diode with a three-dimensional-photonic crystal (3-D-PhC) backside reflector,” IEEE Electron Device Lett., vol. 34, no. 6, pp. 777–779, Jun. 2013.
    81. A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys Rep., vol. 498, no. 4-5, pp. 189-241, 2011.
    82. C. T. Kuo, L. H. Hsu, B. H. Huang, H. C. Kuo, C. C. Lin, and Y. J. Cheng, “Influence of the microstructure geometry of patterned sapphire substrates on the light extraction efficiency of GaN LEDs,” Appl. Opt., vol. 55, no. 26, pp. 7387–7391, 2016.
    83. S. W. Huang, C. C. Chang, H. Y. Lin, X. F. Li, Y. C. Lin, and C. Y. Liu, “Fabrication of nano-cavity patterned sapphire substrate using self-assembly meshed Pt thin film on c-plane sapphire substrate,” Thin Solid Films, vol. 628, pp. 127–131, 2017.
    84. X. H. Li, R. Song, I. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J., vol. 3, no. 3, pp. 489–499, 2011.
    85. P. Zhu, G. Liu, J. Zhang, and N. Tansu, “FDTD analysis on extraction efficiency of GaN light-emitting diodes with microsphere arrays,” J. Display Technol., vol. 9, pp. 317–323, 2013.
    86. Z. Z. Liu, C. Zhu, Y. Wang, Y. Shen, H. Yang, C. Gu, J. Li, B. Liu, and X. Xu, “Light emitting enhancement and angle-resolved property of surface textured GaN- based vertical LED,” J. Opt., vol. 45, no. 1, pp. 81–86, 2016.
    87. Y. C. Yao, J. M. Hwang, Z. Po. Yang, J. Yu. Haung, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep., vol. 6, Art. no. 22659, 2016.
    88. C. Y. Chen and W. C. Liu, “Light extraction enhancement of GaN-based light-emitting diodes with textured sidewalls and ICP-transferred nanohemispherical backside reflector,” IEEE Trans. Electron Devices, vol. 64, no. 9, pp. 3672-3677, 2017.
    89. C. Y. Chen, W. C. Chen, C. H. Chang, Y. L. Lee, W. C. Liu, “Implementation of light extraction improvements of GaN-based light-emitting diodes with specific textured sidewalls,” Opt. Laser Technol., 101(2018) 172-176.
    90. Y. Igasaki and H. Kanma, “Argon gas pressure dependence of the properties of transparent conducting ZnO:Al films deposited on glass substrates,” Appl. Surf. Sci., vols. 169–170, pp. 508–511, 2001.
    91. Y. J. Lu, Z. Q. Guo, T. M. Shih, Y. L. Gao, W. L. Huang, H. L. Lu, Y. Lin, and Z. Chen, “Optical degradation mechanisms of indium gallium nitride-based white light emitting diodes by high-temperature aging tests,” IEEE Trans. Rel., vol. 65, no. 1, pp. 256–262, 2016.
    92. B. R. Huang, C. C. Liao, W. C. Ke, Y. C. Chang, H. P. Huang, and N. C. Chen, “Poole–Frenkel effect on electrical characterization of Al-doped ZnO films deposited on p-type GaN,” J. Appl. Phys., vol. 115, p. 113705, 2014.
    93. C. H. Hsu, S. Y. Chen, W. C. Chen, C. H. Chang, C. Y. Chen, J. H. Tsai, and W. C. Liu, “Study of a GaN-based LED with an Al/AZO composite transparent conductive layer,” IEEE Trans. Electron Devices, vol. 64, no. 9, pp. 3678-3682, 2017.
    94. J. K. Liou, Y. C. Chan, W. C. Chen, C. H. Chang, C. Y. Chen, J. H. Tsai, and W. C. Liu, “Characteristics of GaN-based LEDs with hybrid microhole arrays and SiO2 microspheres/nanoparticles structures,” IEEE Trans. Electron Devices, vol. 64, no. 7, pp. 2854-2858, 2017.
    95. J. K. Huang, C. Yu. Liu, T. P. Chen, H. W. Huang, F. I. Lai, P. T. Lee, C. H. Lin, C. Y. Chang, T. S. Kao, and H. C. Kuo, “Enhanced light extraction efficiency of GaN-based hybrid nanorods light-emitting diodes,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 4, p. 6000107, 2015
    96. Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, and W. C. Liu, “Improved performance of an InGaN-based light-emitting diode with a p-GaN/n-GaN barrier junction,” IEEE J. Quantum Electron., vol. 47, no. 6, pp. 755–761, 2011.
    97. S. H. Kim, H. H. Park, Y. H. Song, H. J. Park, J. B. Kim, S. R. Jeon, H. Jeong, M. S. Jeong, and G. M. Yang, “An improvement of light extraction efficiency for GaN-based light emitting diodes by selective etched nanorods in periodic microholes,” Opt. Express, vol. 21, no. 6, pp. 7125–7130, 2013.
    98. F. I. Lai, S. C. Ling, C. E. Hsieh, T. H. Hsueh, H. C. Kuo, and T. C. Lu, “Extraction Efficiency Enhancement of GaN-Based Light-Emitting Diodes by Microhole Array and Roughened Surface Oxide,” Electron Device Lett., vol. 30, no. 5, pp. 496–498, 2009.
    99. C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, “Nitride-Based LEDs With Textured Side Walls,” Photon. Technol. Lett., vol. 16, no. 3, pp. 750–752, 2004.
    100. W. C. Yang, C. Lo, C. Y. Wei, and W. S. Lour, “Cell-temperature determination in InGaP–(In)GaAs–Ge triple-junction solar cells,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1412–1414, 2011.
    101. H. C. Yu, C. T. Wan, W. C. Chen, W. C. Hsu, K. H Su, C. Y. Huang and Y. K. Su, “Performance improvement of InGaAsN/GaAs quantum well lasers by using trimethylantimony preflow,” Appl. Phys. Exp., vol. 4, p. 012103, 2011.
    102. D. Steigerwald, S. Rudaz, H. Liu, R. S. Kern, W. Götz, and R. Fletcher, “III–V nitride semiconductors for high-performance blue and green light-emitting devices,” JOM, vol. 49, pp. 18–23, Sep. 1997.
    103. J. K. Liou, C. C. Chen, P. C. Chou, S. Y. Cheng, J. H. Tsai, R. C. Liu, and W. C. Liu, “Effects of the use of an aluminum reflecting and an SiO2 insulating layers (RIL) on the performance of a GaN-based light-emitting diode with the naturally textured p-GaN surface,” IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2282–2289, 2013.
    104. J. K. Huang, C. Yu. Liu, T. P. Chen, H. W. Huang, F. I. Lai, P. T. Lee, C. H. Lin, C. Y. Chang, T. S. Kao, and H. C. Kuo, “Enhanced light extraction efficiency of GaN-based hybrid nanorods light-emitting diodes,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 4, art. no. 6000107, 2015
    105. C. H Hsu, Yi. C Chan, W. C. Chen, C. H. Chang, J. K. Liou, S. Y. Cheng, D. F. Guo, and W. C. Liu, Senior Member, IEEE, “Study of GaN-based LEDs with hybrid SiO2 microsphere/nanosphere antireflection coating as a passivation layer by a rapid convection deposition,” IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 1134–1139, 2017.
    106. P. Zuo, B. Zhao, S. Yan, G. Yue, H. Yang, Y. Li, H. Wu, Y. Jiang, H. Jia, J. Zhou, H. Chen, “Improved optical and electrical performances of GaN-based light emitting diodes with nano truncated cone SiO2 passivation layer,” Opt. Quantum Electron., vol. 48, p. 288, 2016.
    107. Y. C. Shih, G. Kim, J. P. You, and F. G. Shi, “Optical interaction between LED backside reflectors and die attach adhesives,” IEEE Photon. Technol. Lett., vol. 28, no. 13, pp. 1446–1449, 2016.
    108. J. K. Liou, W. C. Chen, C. H. Chang, Y. C. Chang, J. H. Tsai, and W. C. Liu, “Enhanced light extraction of a high-power GaN-based light-emitting diode with a nanohemispherical hybrid backside reflector,” IEEE Trans. Electron Devices, vol. 62, no. 10, pp. 3296–3301, 2015.
    109. S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Improvement of InGaN–GaN Light-Emitting Diodes With Surface-Textured Indium–Tin–Oxide Transparent Ohmic Contacts,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 649–651, 2003.
    110. C. H. Hsu, Y. C. Chan, W. C. Chen, C. H. Chang, J. K. Liou, S. Y. Cheng, D. F. Guo, and W. C. Liu, “Study of GaN-based LEDs with hybrid SiO2 microsphere/nanosphere antireflection coating as a passivation layer by a rapid convection deposition,” IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 1134-1139, 2017.
    111. P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir, vol. 24, no. 21, pp. 12150–12157, 2008.
    112. P. Kumnorkaew, A. L. Weldon, and J. F. Gilchrist, “Matching constituent fluxes for convective deposition of binary suspensions,” Langmuir, vol. 26, pp. 2401–2405, 2010.
    113. S. J. So, and C. B. Park, “Improvement of brightness with Al2O3 passivation layers on the surface of InGaN/GaN-based light-emitting diode chips,” Thin Solid Films, vol. 516, no. 8, pp. 2031-2034, 2008.
    114. H. Y. Liu, W. C. Hsu, B. Y. Chou, Y. H. Wang, W. C. Sun, S. Y. Wei, and S. M. Yu, “Al2O3 Passivation Layer for InGaN/GaN LED Deposited by Ultrasonic Spray Pyrolysis,” IEEE Photon. Technol. Lett., vol. 26, no. 12, pp. 1243-1246, 2014.
    115. X. H. Li, P. Zhu, G. Liu, J. Zhang, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light Extraction Efficiency Enhancement of III-Nitride Light-Emitting Diodes by Using 2-D Close-Packed TiO Microsphere Arrays,” IEEE J. Display Technol., vol. 9, no. 5, pp. 324-332, 2013.
    116. P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, “Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays,” Langmuir, vol. 24, no. 21, pp. 12150-12157, 2008.
    117. P. C. Wayner, “Interfacial profile in the contact line region of a finite contact angle system,” J. Colloid Interf. Sci., vol. 77, no. 2, pp. 495-500, 1980.
    118. K. Stephan, L. C. Zhong, and P. Stephan, “Influence of capillary pressure on the evaporation of thin liquid films,” Heat and Mass Transfer, vol. 30, no. 6, pp. 467-472, 1995.
    119. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature, vol. 389, no. 6653, pp. 827-829, 1997.
    120. P. I. Stavroulakis, N. Christou, and D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly,” Mater. Sci. Eng., B, vol. 165, no. 3, pp. 186-189, 2009.
    121. J. Y. Kim, M. K. Kwon, J. P. Kim, and S. J. Park, “Enhanced light extraction from triangular GaN-based light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 19, no. 23, pp. 1865–1867, Dec. 1, 2007.
    122. A. N. Noemaun, F. W. Mont, G. B. Lin, J. Cho, E. F. Schubert, G. B. Kim, C. Sone, and J. K. Kim, “Optically functional surface composed of patterned graded-refractive-index coatings to enhance light-extraction of GaInN light-emitting diodes,” J. Appl. Phys., vol. 110, p. 054510, 2011.
    123. P. Mao, F. Sun, H. Yao, J. Chen, B. Zhao, B. Xie, M. Han, and G. Wang, “Extraction of light trapped due to total internal reflection using porous high refractive index nanoparticle films,” Nanoscale, vol. 6, no. 14, pp. 8177-8184, 2014.
    124. B. U. Ye, B. J. Kim, Y. H. Song, J. H. Son, H. k. Yu, M. H. Kim, J. L. Lee, and J. M. Baik, “Enhancing Light Emission of Nanostructured Vertical Light-Emitting Diodes by Minimizing Total Internal Reflection,” Adv. Funct. Mater., vol. 22, no. 3, pp. 632-639, 2012.
    125. S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Enhanced Output Power of InGaN–GaN Light-Emitting Diodes With High-Transparency Nickel-Oxide–Indium-Tin-Oxide Ohmic Contacts,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 646-648, 2003.
    126. D.W. Kim, Y.J. Sung, J.W. Park, and G.Y. Yeom, “A study of transparent indium tin oxide (ITO) contact to p-GaN,” Thin Solid Films, vol. 741, pp. 21-27, 2001.
    127. J.K. Liou, C. C. Chena, P. C. Chou, T. Y. Tsai, S. Y. Cheng, and W. C. Liu, “Improved current spreading performance of a GaN-based light-emitting diode with a stair-like ITO layer,” Solid-State Electron, vol. 99, pp. 21–24, 2014.
    128. H. K. Lee, D. H. Joo, Y. H. Ko, Y. Yeh, Y. P. Kim, and J. S. Yu, “Improved light extraction of GaN-based blue light-emitting diodes with ZnO nanorods on transparent Ni/Al-doped ZnO current spreading layer,” Jpn. J. Appl. Phys., vol. 51, p. 122102, 2012.
    129. C. H. Kuo, C. L. Yeh, P. H. Chen, W. C. Lai, C. J. Tun, J. K. Sheu, and G. C. Chia, “Low Operation Voltage of Nitride-Based LEDs with Al-Doped ZnO Transparent Contact Layer,” Electrochem. Solid-State Lett., vol. 11, no. 9, pp. H269-H271, 2008.
    130. J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun, “Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer,” Appl. Phys. Lett., vol. 90, p. 263511, 2007.
    131. S. L. Ou, D. S. Wuu, S. P. Liu, Y. C. Fu, S. C. Huang, and R. H. Horng, “Pulsed laser deposition of ITO/AZO transparent contact layers for GaN LED applications,” Opt. Express, vol. 19, no. 17, pp. 16244-16251, 2011.
    132. D. Chen, J. Lu, R. Lu, L. Chen, and Z. Ye, “High-Performance GaN-Based LEDs With AZO/ITO Thin Films as Transparent Contact Layers, ” IEEE Trans. Electron Devices, vol. 64, no. 4, pp. 2549-2555, 2017.
    133. C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, G. C. Chi, “Applications of transparent Al-doped ZnO contact on GaN-based power LED, ” Proc. SPIE Gallium Nitride Materials and Devices, vol. 61210, 2006

    下載圖示 校內:2023-08-01公開
    校外:2023-08-01公開
    QR CODE