| 研究生: |
蔡秀青 Tsai, Hsiu-Ching |
|---|---|
| 論文名稱: |
G-KKM族在廣義凸空間上的同值點定理 Coincidence Theorems for maps in G-KKM(X,Y) on Generalized Convex Spaces |
| 指導教授: |
黃永裕
Huang, Young-Ye |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 23 |
| 外文關鍵詞: | variational inequality, minimax theorem, coincidence theorem, fixed point theorem |
| 相關次數: | 點閱:79 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this paper, we define the class G-KKM(X,Y) consisting of all multifunctions T:X→2^Y which have the strictly generalized KKM property for a generalized convex space (X,D;Γ). Such class contains Park's admissible class as a subclass. We obtain a coincidence theorem for maps in G-KKM(X,Y) and apply it to establish KKM type theorems, fixed point theorems and minimax theorems.
[1] J.P. Aubin and I. Ekeland, Applied Nonliner Analysis, Wiley, New York, 1984.
[2] H. Ben-El-Michaiekh and P. Deguire, Approachability and fixed points for nonconvex set-valued maps, J. Math. Anal. Appl. 170(1992), 477-500.
[3] S.S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991), 208-223.
[4] T.H. Chang, Y.Y. Huang and J.C. Jeng, On S-KKM property and related topics, preprint.
[5] T.H. Chang and C.L. Yen, Generalized KKM theorem and its applications, Banyan Math. J. 2(1996), 21-28.
[6] T.H. Chang and C.L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235.
[7] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266(1984), 519-537.
[8] A. Granas and F.C. Liu, Coincidences for set-valued maps and minimax inequalities, J. Math. Pures. Appl. 65(1986), 119-148.
[9] M. Lassonde, On the use of KKM multifunctions in fixed point theorey and related topics, J. Math. Anal. Appl. 97(1983), 151-201.
[10] L.J. Lin and T.H. Chang, S-KKM theorems, saddle points and minimax inequalities, to appear in Nonlinear Analysis, TMA.
[11] S. Park, Foundations of the KKM theory via coincidences of composities of upper semicontinuous maps, J. Korean Math. Soc. 31(1994), 493-519.
[12] S. Park and H.Kim, Admissible classes of multifunctions on generalized convex spaces, Proc. Coll. Natur. Sci. Seoul National University 18(1993), 1-21.
[13] S. Park and H.Kim, Coincidence theorem for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197(1996), 173-187.