簡易檢索 / 詳目顯示

研究生: 蔡秀青
Tsai, Hsiu-Ching
論文名稱: G-KKM族在廣義凸空間上的同值點定理
Coincidence Theorems for maps in G-KKM(X,Y) on Generalized Convex Spaces
指導教授: 黃永裕
Huang, Young-Ye
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 23
外文關鍵詞: variational inequality, minimax theorem, coincidence theorem, fixed point theorem
相關次數: 點閱:79下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this paper, we define the class G-KKM(X,Y) consisting of all multifunctions T:X→2^Y which have the strictly generalized KKM property for a generalized convex space (X,D;Γ). Such class contains Park's admissible class as a subclass. We obtain a coincidence theorem for maps in G-KKM(X,Y) and apply it to establish KKM type theorems, fixed point theorems and minimax theorems.

    Section 1. Introduction.................................1 Section 2. The class G-KKM(X,Y).........................4 Section 3. Coincidence Points and Fixed Points..........7 Section 4. Minimax Inequalities........................17 References.............................................22

    [1] J.P. Aubin and I. Ekeland, Applied Nonliner Analysis, Wiley, New York, 1984.

    [2] H. Ben-El-Michaiekh and P. Deguire, Approachability and fixed points for nonconvex set-valued maps, J. Math. Anal. Appl. 170(1992), 477-500.

    [3] S.S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991), 208-223.

    [4] T.H. Chang, Y.Y. Huang and J.C. Jeng, On S-KKM property and related topics, preprint.

    [5] T.H. Chang and C.L. Yen, Generalized KKM theorem and its applications, Banyan Math. J. 2(1996), 21-28.

    [6] T.H. Chang and C.L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235.

    [7] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266(1984), 519-537.

    [8] A. Granas and F.C. Liu, Coincidences for set-valued maps and minimax inequalities, J. Math. Pures. Appl. 65(1986), 119-148.

    [9] M. Lassonde, On the use of KKM multifunctions in fixed point theorey and related topics, J. Math. Anal. Appl. 97(1983), 151-201.

    [10] L.J. Lin and T.H. Chang, S-KKM theorems, saddle points and minimax inequalities, to appear in Nonlinear Analysis, TMA.

    [11] S. Park, Foundations of the KKM theory via coincidences of composities of upper semicontinuous maps, J. Korean Math. Soc. 31(1994), 493-519.

    [12] S. Park and H.Kim, Admissible classes of multifunctions on generalized convex spaces, Proc. Coll. Natur. Sci. Seoul National University 18(1993), 1-21.

    [13] S. Park and H.Kim, Coincidence theorem for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197(1996), 173-187.

    下載圖示 校內:立即公開
    校外:2003-06-16公開
    QR CODE