| 研究生: |
周伯諱 Zhou, Bo-Hui |
|---|---|
| 論文名稱: |
具強健性之無人四旋翼機控制設計 Robust Control Design of Four-Rotor Rotorcrafts |
| 指導教授: |
陳永裕
Chen, Yung-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 無人四旋翼機 、回授線性化 、強健控制 、外界擾動 |
| 外文關鍵詞: | Four-Rotor rotorcrafts, feedback linearization, waypoint tracking, robust control, wind gust |
| 相關次數: | 點閱:144 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無人四旋翼機被廣泛地應用在各種用途,諸如:軍事戰略、災難救援、地勢探勘和環境的探索等。此外與一般飛機比較下,因其具有較高的靈敏度、較低的開發成本與較小的體積等優點,故無人四旋翼機成為近年來熱門的研究之一。本篇論文中,將使用拉氏法推導出四旋翼機在空間中飛行之數學模型,並且結合一風對飛行載具之擾動模型來描述四旋翼機在真實環境下的受風影響之實際飛行行為。本文結合回授線性化與強健控制的方法所推導出之回授強健控制器:控制推力與控制力矩,經證明可使四旋翼機在沒有外界風的擾動下,其位置誤差與姿態誤差均可漸進收斂至零;並且在具有外界風的擾動下,此研究所提出之強健控制器項亦可有效抑制外部之干擾,使四旋翼機穩定飛行至預期之目標點。最後由實驗結果顯示,本論文所提出之回授強健控制器能使無人四旋翼機有效地抵制外界擾動對飛行的影響,進而快速且精準地飛行至目標點。
Obviously, the dynamic motion equations of Four-Rotor rotorcrafts which includes the physical behavior of wind gusts reveals the highly nonlinear and complex characteristics of this kind of flying vehicle, and this paper presents a nonlinear robust control strategy consisted of a two-loop control structure to solve the waypoint tracking problem for Four-Rotor rotorcrafts. In first control loop, the position errors are considered for achieving a null steady-state error before the controlled Four-Rotor rotorcraft arrives at each of the predefined waypoints based on the feedback linearization control method, and a nonlinear robust controller is simultaneously developed in the second control loop based on the attitude errors to stabilize the rotational movements during wind gusts constantly act on the system. Simulation results show the excellent tracking performance of this proposed robust control design when encountering the inevitable natural power: wind gusts.
[1] P. McKerrow, “Modelling the Dragon flyer four-rotor helicopter”, Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3596-3601, New Orleans, LA, 2004.
[2] T. Hamel, R. Mahony, R. Lozano and J. Ostrowski, “Dynamic Modelling and Configuration Stabilization for an X4-Flyer”, Proceedings of the 15th IFAC World Congress, Barcelona, Spain, 2002.
[3] A. Tayebi and S. McGilvray, “Attitude Stabilization of a VTOL Quadrotor Aircraft”, IEEE Transactions on Control Systems Technology, Vol. 14, No. 3, pp. 562-572, 2006.
[4] Z. Zuo, “Trajectory tracking control design with command-filtered compensation for a quadrotor”, IET Control Theory and Applications, Vol. 4, No. 11, pp. 2343-2355, 2010.
[5] P. Castillo, A. Dzul, and R. Lozano, “Real-time stabilization and tracking of a four rotor mini rotorcraft”, IEEE Transactions on Control Systems Technology, Vol. 12, No. 4, pp. 510-516, 2004.
[6] S. Bouabdallah, A. Noth, and R. Siegwan, “PID vs LQ control techniques applied to an indoor micro quadrotor”, Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2451-2456, Sandal, Japan, 2004.
[7] Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky, “Adaptive Control of Quadrotor UAVs: A Design Trade Study With Flight Evaluations”, IEEE Transactions on Control Systems Technology, Vol. 21, No. 4, pp. 1400-1406, 2013.
[8] Feng Lin, W. Zhang and R. D. Brandt, “Robust hovering control of a PVTOL aircraft”, IEEE Transactions on Control Systems Technology, Vol. 7, No. 3, pp. 343-351, 1999.
[9] A. Jaritz and M. W. Spong, “An experimental comparison of robust control algorithms on a direct drive manipulator”, IEEE Transactions on Control Systems Technology, Vol. 4, No. 6, pp. 627-640, 1996.
[10] B. S. Chen, Y. Y. Chen and C. L. Lin “Nonlinear fuzzy H∞ guidance law with saturation of actuators against maneuvering targets”, IEEE Transactions on Control Systems Technology, Vol. 10, No. 6, pp. 769-779, 2002.
[11] W. Dong and K.-D. Kuhnert, “Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties”, IEEE Transactions on Robotics, Vol. 21, No. 2, pp. 261-266, 2005.
[12] Q. Wang and R. F. Stengel, “Robust nonlinear flight control of a high-performance aircraft”, IEEE Transactions on Control Systems Technology, Vol. 13, No. 1, pp. 15-26, 2005.
[13] A. Das, K. Subbarao, and F. Lewis, “Dynamic inversion with zero-dynamics stabilization for quadrotor control”, IET Control Theory and Applications, Vol. 3, No. 3, pp. 303-314, 2009.
[14] J. T.-Y. Wen and K. Kreutz-Delgado, “The attitude control problem”, IEEE Transactions on Automatic Control, Vol. 36, No. 10, pp. 1148-1162, 1991.
[15] I. Kanellakopoulos, P. V. Kokotovic, A.S. Morse, “Systematic design of adaptive controllers for feedback linearizable systems”, IEEE Transactions on Automatic Control, Vol. 36, No. 11, pp. 1241-1253, 1991.
[16] F. Lizarralde and J. T. Wen, “Attitude Control Without Angular Velocity Measurement: A Passivity Approach”, IEEE Transactions on Automatic Control, Vol. 41, No. 3, pp. 468-472, 1996.
[17] M. Athans, D. Castanon, K. Dunn, C. Greene, Wing Lee, N. Jr. Sandell, and A. S. Willsky, “The Stochastic Control of the F-8C Aircraft Using a Multiple Model Adaptive Control (MMAC) Methad-Part 1: Equillibrium Flight”, IEEE Transactions on Automatic Control, Vol. 22, No.5, pp.768-780, 1977.
[18] M. O. Efe, “Neural Network Assisted Computationally Simple PIλDμ Control of a Quadrotor UAV”, IEEE Transactions on Industrial Informatics, Vol. 7, No. 2, pp. 354-361, 2011.
[19] L. Besnard, Y. B. Shtessel, and B. Landrum, “Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer”, Journal of the Franklin Institute, Vol. 349, No. 2, pp. 658-684, 2012.
[20] T. Lee, “Robust Adaptive Attitude Tracking on SO(3) With an Application to a Quadrotor UAV”, IEEE Transactions on Control Systems Technology, Vol. 21, No. 5, pp. 1924-1930, 2013.
[21] J. Li and Y. Li, “Dynamic Analysis and PID Control for a Quadrotor”, Proceedings of the 2004 IEEE International Conference on Mechatronics and Automation, pp. 573-578, Beijing, 2011.
[22] J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor autonomous vehicle test environment,” IEEE Control System Magazine, Vol. 28, No. 2, pp. 51-64, 2008.
[23] M. Hua, T. Hamel, P. Morin, and C. Samson, “A control approach for thrust-propelled underactuated vehicles and its application to VTOL drones”, IEEE Transactions on Automatic Control, Vol. 54, No. 8, pp. 1837-1853, 2009.
[24] M. Vidyasagar, “Optimal rejection of persistent bounded disturbances”, IEEE Transactions on Automatic Control, Vol. 31, No. 6, pp. 527-534, 1986.
[25] C. L. Lin, and Y. Y. Chen, “Design of fuzzy logic guidance law against high-speed target”, Journal of Guidance, Control, and Dynamics, Vol. 23, No. 1, pp. 17-25, 2000.
[26] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, “Quadrotor helicopter flight dynamics and control: Theory and experiment”, Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, South Carolina, 2007.
[27] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP multiple micro-UAV testbed”, IEEE Robotics and Automation Magazine, Vol. 17, No. 3, pp. 56-65, 2010.
[28] O.-E. Fjellstad and T. I. Fossen, “Comments on "The attitude control problem"”, IEEE Transactions on Automatic Control, Vol. 39, No. 3, pp. 699-700, 1994.
[29] S. Grzonka, G. Grisetti and W. Burgard, “A Fully Autonomous Indoor Quadrotor”, IEEE Transactions on Robotics, Vol. 28, No. 1, pp. 90-100, 2012.
[30] K. Alexis, G. Nikolakopoulos and A. Tzes, “Model predictive quadrotor control: attitude, altitude and position experimental studies”, IET Control Theory and Applications, Vol. 6, No. 12, pp. 1812-1827, 2012.
[31] T. Dierks and S. Jagannathan, “Output Feedback Control of a Quadrotor UAV Using Neural Networks”, IEEE Transactions on Neural Networks, Vol. 21, No. 1, pp. 50-66, 2010.
[32] T. Ryan and H. J. Kim, “LMI-Based Gain Synthesis for Simple Robust Quadrotor Control”, IEEE Transactions on Automation Science and Engineering, Vol. 10, No. 4, pp. 1173-1178, 2013.
[33] R. Zhang, Q. Quan and K.-Y. Cai, “Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances”, IET Control Theory and Applications, Vol. 5, No. 9, pp. 1140-1146, 2011.
[34] O. Bourquardez, R. Mahony, N. Guenard, F. Chaumette, T. Hamel and L. Eck, “Image-Based Visual Servo Control of the Translation Kinematics of a Quadrotor Aerial Vehicle”, IEEE Transactions on Robotics, Vol. 25, No. 3, pp. 743-749, 2009.
[35] M. Ilarslan, M. K. Bayrakceken and A. Arisoy, “Avionics system design of a mini VTOL UAV”, IEEE Aerospace and Electronic Systems Magazine, Vol. 26, No. 10, pp. 35-40, 2011.
[36] A. Chamseddine, Y. Zhang, C. A. Rabbath, C. Join and D. Theilliol, “Flatness-Based Trajectory Planning/Replanning for a Quadrotor Unmanned Aerial Vehicle”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 4, pp. 2832-2848, 2012.
校內:2024-12-31公開