簡易檢索 / 詳目顯示

研究生: 駱守凡
Luo, Shou-fan
論文名稱: 海洋次生重晶石在台灣西南海域泥火山沉積物之分佈
Sedimentary diagenetic barite distribution in submarine mud volcano offshore southwestern Taiwan
指導教授: 游鎮烽
You, Chen-Feng
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 74
中文關鍵詞: 海底泥火山重晶石
外文關鍵詞: marine mud volcano, barite
相關次數: 點閱:90下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 天然氣水合物 (gas hydrate),是極具開發價值的潔淨能源,近期研究發現可利用海底沉積物中的次生重晶石 (Diagenetic Barite),推測地層中甲烷通量的變化情形,做為天然氣水合物蘊藏可能指標。本研究以台灣西南海域之海底泥火山沉積區為研究目標,分析位處於同一個海底泥火山沉積區有異常高甲烷通量之G23-1、G23-2、GT1站位岩心,探討其次生重晶石分佈情形及地化意義。海底地層甲烷氣體向上逸散導致甲烷厭氧氧化作用(anaerobic oxidation of methane, AOM),加速地層孔隙水硫酸根的消耗。在硫酸根耗盡與甲烷氣體交會帶(Sulfate- Hydrocarbon transition, SHT)之下,重晶石會被分解成硫酸根與鋇離子。當鋇離子向上擴散到SHT之上,則再結晶沉積形成次生重晶石富集層,稱為「barite front」,可利用barite front來判斷地層甲烷氣體通量及紀錄通量的變化情形。
    本研究採用前人所提出的BASEX重晶石萃取法,並經過改良及測試,確定改良後的「modi-BASEX」萃取法可有效的萃取出沉積物中的重晶石,並配合HR-ICP-MS 對萃取試液進行鋇離子濃度與其它元素濃度的分析。分析得到的沈積物鋇離子濃度變化曲線,與孔隙水中硫酸根濃度及鋇離子濃度比較,發現兩站位沉積物中,在SHT深度上方有barite front的存在,且深度都很淺,代表所研究的泥火山區甲烷通量非常大。相對於GT1而言,G23-1現今的barite front深度較淺,在僅50公分處,代表甲烷通量較大,可推測G23-1站位較靠近海底泥火山口。
    本研究分析的岩心中都可發現多個barite front的存在,且每個barite front的濃度都不高,這個現象與國外在天然氣水合物埋藏區常發現單一、高濃度的barite front不同,可能代表海底泥火山區甲烷通量變化頻繁,地質作用活躍的特性。最後,由於 barite front可紀錄地層中甲烷通量及氧化速率變化,因此用數值模型計算其累積形成時間,推測一個地區氧化深度的擺動情形。所計算出的barite front形成時間約在數百~數千年尺度,累積時間短,同樣證實此地區甲烷通量變化大的現象。

    Gas hydrate is an ice-like crystalline mineral in marine environment and has a potential as the future energy. Recent studies indicated that it’s possible to estimate the gas hydrate storage in continental margin using the diagenetic barite. On the other hand, previous studies observed methane gas diffused upward, subsequently labile Ba re-precipitated as barite front involved with Anaerobic Oxidation Methane (AOM) and induced to barite enriched at the depth of Sulfate Hydrocarbon Transition (SHT). Therefore, the barite front can be used to assess changes in upward methane flux over time. Consequently, the depth variation of barite front could be related to the evolution of the upward methane flux in sediments.
    Three sediment cores, G23-1、G23-2 and GT1, were sampled from submarine mud volcano area, offshore southwestern Taiwan. In order to obtain the actual sedimentary barite, barite sequential extraction procedure (BASEX) was adopted from Rutten et al. (2002), and then analyzed accurately by HR-ICP-MS. Based on preliminary results, we can effectively extract the barites from ambient sediments, and the peaks of sedimentary barium can be found at depth around SHT. This is consistent with published studies, and further confirms the observation of Ba profile in the surrounding pore waters.
    We found the modern barite fronts are lie on very shallow depth, especially on core G23-1 (~50 cm), indicating a strong methane flux occurred in these sites. Furthermore, spiky but relatively low content of barite fronts can be observed in the three sites. This may demonstrate the geological activity and methane flux change frequently in submarine mud volcano area around Taiwan. Finally, we calculated the barite concentration of barite front by integral, and estimate the formation time of barite front, to try to reestablish the oxidation depth changes. The calculated results are about few hundreds to thousands years, it also indicate the methane flux change frequently.

    摘要 ................................................................................................................................ I Abstract .......................................................................................................................... II 誌謝 ................................................................................................................................ III 章節目錄 ......................................................................................................................... IV 圖目 ................................................................................................................................ VI 表目 ............................................................................................................................. ...VIII 第一章 序論 1 1-1研究背景 1 1-2 海底沉積物重晶石的介紹與分類 4 1-2.1海洋重晶石(Marine Barite) 4 1-2.2熱液重晶石(Hydrothermal barite) 5 1-2.3次生重晶石(Diagenetic Barite) 5 1-2.4海洋沉積物重晶石分辨方法 6 1-3前人研究 9 1-3.1甲烷通量與硫酸根消耗 9 1-3.2 次生重晶石的分佈 11 1-3.3甲烷噴出通量與Barium front 累積時間理論計算 12 1-3.4天然氣滲流與海底泥火山 13 1-3.5 全球泥火山分佈 14 1-4 研究目的 17 第二章 研究區域 18 2-1 台灣西南海域簡介 18 2-2 海底地形與地質構造背景 18 2-3台灣西南海域的沈積環境 22 2-4 地球物理研究資料 22 第三章 研究方法 25 3-1採樣資料 25 3-2 重晶石的萃取方法 28 3-2.1 文獻重晶石的萃取方法─過濾法 29 3-2.2 文獻重晶石的萃取方法─ BASEX萃取法 32 3-2.3 BASEX 萃取法的測試與改良 36 3-3感應耦合電漿質譜儀分析 37 3-3.1儀器構造與原理 37 3-3.2標準品配置及樣品分析 40 第四章 實驗結果與討論 41 4-1方法評估 41 4-1.1過濾法測試 41 4-1.2 BASEX萃取法測試 42 4-1.3 改良BASEX萃取法的測試結果 45 4-1.4 吸附效應的試驗 48 4-2 次生重晶石的萃取 49 4-3海底沉積物中的Barite front 50 4-3.1 Barite front與沉積物孔隙水濃度剖面 50 4-3.2次生重晶石濃度變化情形 54 4-4 Barite front的應用 56 4-4.1 甲烷擴散通量的估算 56 4-4.2 Barite front累積時間計算 58 4-5 重晶石在泥火山沉積區分佈情形 64 第五章 結論 66 參考文獻 68 圖 目 圖1-1.1、天然氣與水兩成分系統平衡相圖 3 圖1-1.2、天然氣水合物的分子結構示意圖 3 圖1-2.1、SEM下的海洋重晶石晶體及熱液重晶石晶體 7 圖1-2.2、SEM下的次生重晶石晶體 8 圖1-2.3、海洋沉積物中重晶石的S同位素與Sr同位素比值 8 圖1-3.1、海底地層中甲烷氣體的生成、遷移、逸散示意圖 10 圖1-3.2、海洋沉積物甲烷通量與孔隙水硫酸根離子斜率變化示意圖 10 圖1-3.3、甲烷地底通量與孔隙水中硫酸根消耗的理論示意圖 12 圖1-3.4、全球Gas hydrate蘊藏地點 15 圖1-3.5、全球陸上及海底泥火山主要分佈地點 15 圖1-3.6、海底泥火山沉積區,孔隙水硫酸根與鋇離子濃度變化趨勢 16 圖2-1.1、西太平洋地體構造圖,紅色方框為台灣西南海域 19 圖2-2.1、台灣西南海域的地形,紅色星號為本研究採樣地點 19 圖2-2.2、台灣西南部海域及陸地延伸構造圖 20 圖2-2.3、台灣西南外海海底地形圖 21 圖2-4.1、台灣西南海域震測剖面 23 圖2-4.2、2007整編之台灣西南海域BSR 分布圖 23 圖2-4.3、2004年2.5D震測精查區塊之構造與其他地球物理資訊圖 24 圖3-1.1、台灣海研一號航次編號697採樣地點圖 27 圖3-1.2、台灣西南海域岩心站位G23震測剖面圖 27 圖3-2.1、Paytan過濾法流程示意圖 30 圖3-2.2、SEM下的重晶石 30 圖3-2.3、JEOL JSM-840A 掃描式電子顯微鏡 31 圖3-2.4、BASEX萃取方法對MMIN人工樣品進行萃取所得結果 34 圖3-2-5、BASEX萃取法操作流程圖 35 圖3-3.1、Thermo-Finnigan, Element2 38 圖3-3.2、雙聚焦質譜儀結構示意圖 38 圖3-3.3(左)、Thermo Finnigan ELEMENT2 離子源系統示意圖 39 圖3-3.3(右)、Thermo Finnigan ELEMENT2 取樣錐與削減錐示意圖 39 圖3-3.4(左)、Thermo-Finnigan, Element2 二次電子倍增管照片 39 圖3-3.4(右)、二次電子倍增管原理示意圖 39 圖3-3.5、用HR-ICP-MS分析標準品所得到的檢量線 40 圖4-1.1鍍上金膜放在載玻片上的沉積物樣品 42 圖4-1.2、BASEX萃取法萃取效率曲線 43 圖4-1.3、氯化銨萃取液中的鐵離子濃度 44 圖4-1.4、氯化銨萃取液中的鋁離子濃度 44 圖4-1.5、原BASEX萃取方法與modi-BASEX萃取法萃取濃度比較 46 圖4-1.6、氯化銨萃取液稀釋進樣與轉換基質進樣比較 47 圖4-1.7、modi-BASEX萃取法再現性測試結果 47 圖4-1.8、modi-BASEX萃取法吸附效應試驗結果 48 圖4-3.1、G23-1岩心之離子濃度剖面圖 51 圖4-3.2、GT1岩心之離子濃度剖面圖 52 圖4-3.3、G23-2岩心之離子濃度剖面圖 54 圖4-3.4、海底泥火山沉積區SHT變化示意圖 55 圖4-4.1、岩心G23-2的barite front累積時間計算 59 圖4-4.2、岩心GT1的barite front累積時間計算 59 圖4-5.1、深海底拖式照像系統(TowCam)海底拍攝的照片 65 圖4-5.2、台灣西南海域海底泥火山分佈圖 65 表 目 表3-1.1、岩心G23採樣資料 25 表3-1.2、岩心GT1採樣資料 26 表3-2.1、BASEX萃取法流程 32 表3-2.2、Rutten(2002)所配置的人工標準樣品MMIN 33 表4-4.1a、岩心G23-2的barite front累積時間計算之參數 60 表4-4.1b、岩心G23-2的barite front累積時間計算之參數 61 表4-4.2a、GT1的barite front累積時間計算之參數 62 表4-4.2b、GT1的barite front累積時間計算之參數 63

    林曉武 (2005) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(2/4)硫酸鹽還原在天然氣水合物賦存區之應用與調查,中央地質調查所報告第94-26-E 號
    林曉武 (2006) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(3/4)硫酸鹽還原在天然氣水合物賦存區之應用與調查,中央地質調查所報告第95-26-E 號
    林曉武 (2007) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(4/4)硫酸鹽還原在天然氣水合物賦存區之應用與調查,中央地質調查所報告第96-27-E 號。
    莊佩涓 (2006)台灣西南海域天然氣水合物賦存區之氣體地球化學研究,國立台灣大學地質科學所碩士論文。
    陳汝勤 (2007) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(4/4)沉積物之粒度、礦物組成與物理性質及其與天然氣水合物分布之關係,中央地質調查所報告第96-27-B 號。
    陳儀清 (1997) 臺灣西南外海海床表層沉積現象之研究。臺灣大學海洋研究所博士論文。
    黃奇瑜 (2005) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(2/4)台灣西南海域天然氣水合物潛能區沈積物之地質學特徵,中央地質調查所報告第94-26-A 號
    楊燦堯 (2005) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(2/4)台灣西南海域海水與沉積物之氣體化學組成,中央地質調查所報告第94-26-F號
    葉一慶、許樹坤 (2002) 台灣西南海域天然氣水合物存在與地體構造關係。二十一世紀海洋新能源—天然氣水合物研討會。
    劉家瑄 (2006) 台灣西南海域天然氣水合物賦存區地質調查研究—地球物理調查(3/4)反射震測與海床聲納迴聲剖面調查研究,中央地質調查所報告第95-26-A號。
    劉家瑄 (2007)台灣西南海域天然氣水合物賦存區地質調查研究—地球物理調查(4/4)反射震測與海床聲納迴聲剖面調查研究,中央地質調查所報告第96-26-A號。
    劉家瑄 (2007)台灣西南海域天然氣水合物賦存區地質調查研究—地球物理調查(4/4)總論,中央地質調查所報告第96-26 總號。

    Berner R. A. Diagenetic models of dissolved species in the interstitial waters of compacting sediments. Am. J. Sci. 275, 88–96 (1975).
    Bishop J. K. B. The barite-opal-organic carbon association in oceanic particulate matter. Nature. 332, 341– 343 (1988).
    Borowski W. S., Paull C. K. and Ussler W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24, 655-658 (1996).
    Brumsack H. J. and Gieskes J. M. Interstitial water tracemetal chemistry of laminated sediments from the Gulf of California, Mexico. Mar. Chem. 14, pp. 89–106 (1983).
    Brumsack H. J., Zuleger E., Gohn E. and Murray R. W. Stable and radiogenic isotopes in pore waters from Leg 127, Japan Sea. In: K.A. Pisciotto, J.C. Ingle, Jr., M.T. von Breymann, J. Barron et al. Proceedings of the Ocean Drilling Program, Scientific Results Vol. 127/128, ODP (Ocean Drill. Prog.), College Station, Texas (1992), pp. 635–650 (Part I) .
    Klein C. and C.S. Hurlbut, Jr. (黃怡禎譯). Manual of Mineralogy 21st ed. 地球科學文教基金會, 438-439 (2000).
    Hensen C., Kasten S., Zabel M. and Schulz H. D. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochim. Cosmochim. Acta. 62, 455-464 (1998).
    Chi W. C., Reed, D. L., Liu, C. S. and Lundberg, N. Distribution of the bottom-simulating reflector in the offshore Taiwan collision zone. TAO. 9(4), 779-794 (1998).
    Chow, J., Lee J. S., Sun R., Liu C. S. and Lundberg N. Characteristics of the bottom simulating reflectors near mud diapirs: offshore southwestern Taiwan. Geo-Marine Lett. 20, 3-9 (2000).
    Coleman D. and Ballard R. D. A highly concentrated region of cold hydrocarbon seeps in the Southeastern Mediterranean Sea. Geo-Mar Lett. 21:162–167 (2001).
    Covey M. C. Lithofacies analysis and basin reconstruction, Plio-Pleistocene western Taiwan foredeep. Petroleum Geology of Taiwan, 20, 53-83 (1984).
    Crank J. The Mathematics of Diffusion. Clarendon Press, Oxford, United Kingdom. 414 pp (1975).
    Dean W. E. and Schreiber B. C. Authigenic barite, Leg 41 Deep Sea Drilling Project. In: Y. Lancelot, E. Seibold et al.Initial Reports of the Deep Sea Drilling Project Vol. 41, U.S. Gov. Print. Off., Washington, D.C. (1978), pp. 915–931.
    Dehairs, F., Goeyens L., Stroobants N., Bernard P., Goyet C., Poisson A. and R. Chesselet. On suspended barite and the oxygen minimum in the Southern Ocean, Global Biogeochem. Cycles, 4, 85– 102 (1990).
    Dehairs, F., Chesselet R. and Jedwab J., Discrete suspended particles of barite and the barium cycle in the open ocean, Earth Planet. Sci. Lett, 49, 528–550, (1980).
    Dickens, G.R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir. Geochim. Cosmochim. Acta 65, 529–543 (2001).
    Dimitrov L. I. Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Science Reviews 59, 49–76 (2002).
    Dymond J., Suess E. and Lyle M. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography 7,163–181 (1992).
    Dymond, J., and Collier R. Particulate barium fluxes and their relationships to biological productivity, Deep Sea Res., Part II, 43, 1283–1308 (1996).
    Eagle M., Paytan A., Arrigo K. R., Dijken G. and Murray R. W. A comparison between excess barium and barite as indicators of carbon export, Paleoceanography, 18, 1, doi:10.1029/2002PA000793 (2003).
    Francois, R., Honjo S., Manganini S. J. and Ravizza G. E. Biogenic barium fluxes to the deep sea: Implications for paleoproductivity reconstruction, Global Biogeochem. Cycles, 9, 289–303 (1995).
    de Lange G. J., van Os B., Pruysers P. A., Middelburg J. J., Castradori D., van Santvoort P., Muller P.J., Eggenkamp H. and Prahl F.G. Possible early diagenetic alteration of palaeo proxies, NATO ASI Series I 17, 225-258 (1994).
    de Lang G. J. Distribution of various extracted phosphorus compounds in the interbedded turbiditic/ pelagic sediments of the Madeira Abyssal Plain, eastern North Atlantic. Mar. Geol. 109, 115-139 (1992).
    Ganeshram R., Francois R., Commeau J. and Brown-Leger S. L. An Experimental Investigation of Barite Formation in Seawater. Geochimica et Cosmochimica Acta, 67, 14, 2599–2605 (2003).
    Ginsburg G. D. and Soloviev V. A. Mud volcano gas hydrates in the Caspian Sea. Bull Geol Soc Denmark 41: 95–100 (1994).
    Goldberg E. D. and Arrhenius, G. Chemistry of pelagic sediments. Geochimica et Cosmochimica Acta 13, 153–212 (1958).
    Hedberg H. D. Relation of methane generation to undercompacted shales, shale diapers, and mucvolcanos. AAPG Bull. 58(4), 661-673 (1974).
    IPCC Working Group I, Climate change: Scientific Basis, Cambridge University, Longon (2001).
    Kopf, A, J. Significance of mud volcanism. Rev. Geophys. 40, 1-51 (2002).
    Kulm L.D. and von Huene R. In: Initial Reports of the Deep Sea Drilling Project Vol. 18, U.S. Gov. Print. Off., Washington, D.C. (1973), p. 1077.
    Kvenvolden K. A. and Bruce Rogers W. Gaia’s breath—global methane exhalations. Marine and Petroleum Geology 22, 579–590 (2005).
    Kvenvolden, K. A. Methane hydrate—a major reservoir of carbon in the shallow geosphere. Chem. Geol. 71, 41–51 (1988).
    Kvenvolden K. A. A review of the geochemistry of methane in natural gas hydrate. Org. Geochem. 23, 997– 1008 (1995).
    Kvenvolden K. A. Methane hydrate in the global organic carbon cycle. Terra Nova 14, 302–306 (2002).
    Liu C. S., Huang I. L. and Teng L. S. Structural features off southwestern Taiwan. Marine Geology, 137, 305-319 (1997).
    MacDonald, G.J. Role of methane clathrates in past and future climates. Clim. Change 16, 247–281 (1990).
    Mazurenko L. L. and Soloviev V. A., Worldwide distribution of deep-water fluid venting and potential occurrences of gas hydrate accumulations. Geo-Mar Lett 23: 162–176 (2003).
    Mazurenko L. L., Soloviev V. A., Gardner J. M. and Ivanov M. K. Gas hydrates in the Ginsburg and Yuma mud volcano sediments (Moroccan Margin): results of chemical and isotopic studies of pore water. Mar. Geol. 195, 201–210 (2003).
    Milkov, A. V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol. 167, 29-42 (2000).
    Paytan A., Mearon S., Cobb K. and Kastner M. Origin of marine barite deposits: Sr and S isotope characterization, GSA, 8, 747-750, (2002).
    Paytan A. Marine barite: A recorder of oceanic chemistry, productivity and circulation. Ph.D. thesis, University of California, San Diego, San Diego, CA, (1996).
    Paytan A., Kastner, M., Martin, E. E., Macdougall, J. D. and Herbert, T. Marine barite as a monitor of seawater strontium isotope composition. Nature 366, 445–449 (1993).
    Pecher I. A. Oceanography - Gas hydrates on the brink. Nature 420, 622-623 (2002).
    Riedinger N., Kasten S., Groger J., Franke C. and Pfeifer K. Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin. Earth and Planetary Science Letters 241, 876–887 (2006).
    Rutten A., and de Lange G.J. A novel selective extraction of barite, and its application to eastern Mediterranean sediments. Earth and Planetary Science Letters 198, 11 –24 (2002).
    Schenau S. J., Prins M. A., de Lange, G. J. and Monnin, C. Barium accumulation in the Arabian Sea: controls of barite preservation in marine sediments. Geochimica et Cosmochimica Acta 65, 1545–1556 (2001).
    Sloan E. D. Clathrate Hydrates of Natural Gases. Marcel Dekker, New York (1990).
    Soloviev V. A., Ginsburg G. D. Water segregation in the course of gas hydrate formation and accumulation in submarine gasseepage fields. Mar Geol 137:59–68 (1997)
    Suess E., von Huene R. Proceedings of the Ocean Drilling Program, Inititial Reports Vol. 112, ODP (Ocean Drill. Prog.), College Station, Texas (1988).
    Suess E., Bohrmann G., Von Huene R., Linke P., Wallmann K., Lammers S. and Sahling H. Fluid venting in the Aleutian subduction zone. J Geophys Res 103:2597–2614 (1998).
    Sun S. C. and Liu C. S. Mud diapirs and submarine channel deposits in offshore Kaohsiung-Hengchun, southwest Taiwan. Petrol. Geol. Taiwan 28, 1-14 (1993).
    Torres M. E. Barite fronts in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology v. 127, p. 125–139, (1996).
    Turekian K. K. and Tausch, E. H. Barium in deep-sea sediments of the Atlantic Ocean. Nature 201, 696–697 (1964).
    von Breymann M. T., Emeis K. C. and Camerlenghi A. Geochemistry of sediments from the Peru upwelling area: results from Sites 680, 685 and 688. In: E. Suess, R. von Huene et al.Proceedings of the Ocean Drilling Program, Scientific Results Vol. 112, ODP (Ocean Drill. Prog.), College Station, Texas (1990), pp. 491–504.
    Waterman L. S., Sayles F. L. and Manheim F. T. Interstitial water studies on small core samples, Legs 16, 17 and 18. In: L.D. Kulm, R. von Huene et al.Initial Reports of the Deep Sea Drilling Project Vol. 18, U.S. Gov. Print. Off., Washington, D.C. (1973), pp. 1001–1012.
    Whelan J., Eglinton L., Cathles L. III, Losh S. and Roberts H. Surface and subsurface manifestations of gas movement through a N-S transect of the Gulf of Mexico. Marine and Petroleum Geology 22, 479–497 (2005).
    Wilson R. D., Monaghan P. H., Osanik A., Price L. C. and Rogers M. A. Estimate of annual input of petroleum to the marine environment from natural marine seepage: transactions, Gulf Coast Association of Geological Societies. 23rd Annual Convention, Houston, TX, pp. 182–193 (1973).
    Wilson R. D., Monaghan P. H., Osanik A., Price L. C. and Rogers M. A. Natural marine oil seepage. Science 184, 857–8651974..
    Wood W. T., Gettrust J. F., Chapman N. R., Spence G. D. and Hyndman R. D. Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness. Nature 420, 656-660 (2002).
    Woodside J. M., Ivanov M. K. and Limonov A. F. Shallow gas and gas hydrates in the Anaximander Mountains region, eastern Mediterranean Sea. In: Gas hydrates: relevance to world margin stability and climate change. Geol Soc Spec Publ 137:177–193 (1998).
    Woodside J. M., Ivanov M .K. and Limonov, A. F. Neotectonics and fluid flow through seafloor sediments in the Eastern Mediterranean and Black Seas: Part I. Eastern Mediterranean SeaIOC Technical Series (Intergovernmental Oceanographic Commission, Unesco) UNESCO 1997, Paris, International, vol. 48. 128 pp. (1997).
    Yang K. M., Ting H. H. and Yuan J. Structural styles and tectonic modes of Neogene extensional tectonics in southwestern Taiwan: implications for hydrocarbon exploration. Petrol. Geol. Taiwan 26, 1-31 (1991).
    Yu, H. S. and Wen Y. H. Physiographic characteristics of the continental margin off southwestern Taiwan. J. Geol. Soc. China 36, 337-351 (1992).

    下載圖示 校內:立即公開
    校外:2008-08-13公開
    QR CODE