| 研究生: |
駱守凡 Luo, Shou-fan |
|---|---|
| 論文名稱: |
海洋次生重晶石在台灣西南海域泥火山沉積物之分佈 Sedimentary diagenetic barite distribution in submarine mud volcano offshore southwestern Taiwan |
| 指導教授: |
游鎮烽
You, Chen-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 海底泥火山 、重晶石 |
| 外文關鍵詞: | marine mud volcano, barite |
| 相關次數: | 點閱:90 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
天然氣水合物 (gas hydrate),是極具開發價值的潔淨能源,近期研究發現可利用海底沉積物中的次生重晶石 (Diagenetic Barite),推測地層中甲烷通量的變化情形,做為天然氣水合物蘊藏可能指標。本研究以台灣西南海域之海底泥火山沉積區為研究目標,分析位處於同一個海底泥火山沉積區有異常高甲烷通量之G23-1、G23-2、GT1站位岩心,探討其次生重晶石分佈情形及地化意義。海底地層甲烷氣體向上逸散導致甲烷厭氧氧化作用(anaerobic oxidation of methane, AOM),加速地層孔隙水硫酸根的消耗。在硫酸根耗盡與甲烷氣體交會帶(Sulfate- Hydrocarbon transition, SHT)之下,重晶石會被分解成硫酸根與鋇離子。當鋇離子向上擴散到SHT之上,則再結晶沉積形成次生重晶石富集層,稱為「barite front」,可利用barite front來判斷地層甲烷氣體通量及紀錄通量的變化情形。
本研究採用前人所提出的BASEX重晶石萃取法,並經過改良及測試,確定改良後的「modi-BASEX」萃取法可有效的萃取出沉積物中的重晶石,並配合HR-ICP-MS 對萃取試液進行鋇離子濃度與其它元素濃度的分析。分析得到的沈積物鋇離子濃度變化曲線,與孔隙水中硫酸根濃度及鋇離子濃度比較,發現兩站位沉積物中,在SHT深度上方有barite front的存在,且深度都很淺,代表所研究的泥火山區甲烷通量非常大。相對於GT1而言,G23-1現今的barite front深度較淺,在僅50公分處,代表甲烷通量較大,可推測G23-1站位較靠近海底泥火山口。
本研究分析的岩心中都可發現多個barite front的存在,且每個barite front的濃度都不高,這個現象與國外在天然氣水合物埋藏區常發現單一、高濃度的barite front不同,可能代表海底泥火山區甲烷通量變化頻繁,地質作用活躍的特性。最後,由於 barite front可紀錄地層中甲烷通量及氧化速率變化,因此用數值模型計算其累積形成時間,推測一個地區氧化深度的擺動情形。所計算出的barite front形成時間約在數百~數千年尺度,累積時間短,同樣證實此地區甲烷通量變化大的現象。
Gas hydrate is an ice-like crystalline mineral in marine environment and has a potential as the future energy. Recent studies indicated that it’s possible to estimate the gas hydrate storage in continental margin using the diagenetic barite. On the other hand, previous studies observed methane gas diffused upward, subsequently labile Ba re-precipitated as barite front involved with Anaerobic Oxidation Methane (AOM) and induced to barite enriched at the depth of Sulfate Hydrocarbon Transition (SHT). Therefore, the barite front can be used to assess changes in upward methane flux over time. Consequently, the depth variation of barite front could be related to the evolution of the upward methane flux in sediments.
Three sediment cores, G23-1、G23-2 and GT1, were sampled from submarine mud volcano area, offshore southwestern Taiwan. In order to obtain the actual sedimentary barite, barite sequential extraction procedure (BASEX) was adopted from Rutten et al. (2002), and then analyzed accurately by HR-ICP-MS. Based on preliminary results, we can effectively extract the barites from ambient sediments, and the peaks of sedimentary barium can be found at depth around SHT. This is consistent with published studies, and further confirms the observation of Ba profile in the surrounding pore waters.
We found the modern barite fronts are lie on very shallow depth, especially on core G23-1 (~50 cm), indicating a strong methane flux occurred in these sites. Furthermore, spiky but relatively low content of barite fronts can be observed in the three sites. This may demonstrate the geological activity and methane flux change frequently in submarine mud volcano area around Taiwan. Finally, we calculated the barite concentration of barite front by integral, and estimate the formation time of barite front, to try to reestablish the oxidation depth changes. The calculated results are about few hundreds to thousands years, it also indicate the methane flux change frequently.
林曉武 (2005) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(2/4)硫酸鹽還原在天然氣水合物賦存區之應用與調查,中央地質調查所報告第94-26-E 號
林曉武 (2006) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(3/4)硫酸鹽還原在天然氣水合物賦存區之應用與調查,中央地質調查所報告第95-26-E 號
林曉武 (2007) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(4/4)硫酸鹽還原在天然氣水合物賦存區之應用與調查,中央地質調查所報告第96-27-E 號。
莊佩涓 (2006)台灣西南海域天然氣水合物賦存區之氣體地球化學研究,國立台灣大學地質科學所碩士論文。
陳汝勤 (2007) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(4/4)沉積物之粒度、礦物組成與物理性質及其與天然氣水合物分布之關係,中央地質調查所報告第96-27-B 號。
陳儀清 (1997) 臺灣西南外海海床表層沉積現象之研究。臺灣大學海洋研究所博士論文。
黃奇瑜 (2005) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(2/4)台灣西南海域天然氣水合物潛能區沈積物之地質學特徵,中央地質調查所報告第94-26-A 號
楊燦堯 (2005) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(2/4)台灣西南海域海水與沉積物之氣體化學組成,中央地質調查所報告第94-26-F號
葉一慶、許樹坤 (2002) 台灣西南海域天然氣水合物存在與地體構造關係。二十一世紀海洋新能源—天然氣水合物研討會。
劉家瑄 (2006) 台灣西南海域天然氣水合物賦存區地質調查研究—地球物理調查(3/4)反射震測與海床聲納迴聲剖面調查研究,中央地質調查所報告第95-26-A號。
劉家瑄 (2007)台灣西南海域天然氣水合物賦存區地質調查研究—地球物理調查(4/4)反射震測與海床聲納迴聲剖面調查研究,中央地質調查所報告第96-26-A號。
劉家瑄 (2007)台灣西南海域天然氣水合物賦存區地質調查研究—地球物理調查(4/4)總論,中央地質調查所報告第96-26 總號。
Berner R. A. Diagenetic models of dissolved species in the interstitial waters of compacting sediments. Am. J. Sci. 275, 88–96 (1975).
Bishop J. K. B. The barite-opal-organic carbon association in oceanic particulate matter. Nature. 332, 341– 343 (1988).
Borowski W. S., Paull C. K. and Ussler W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24, 655-658 (1996).
Brumsack H. J. and Gieskes J. M. Interstitial water tracemetal chemistry of laminated sediments from the Gulf of California, Mexico. Mar. Chem. 14, pp. 89–106 (1983).
Brumsack H. J., Zuleger E., Gohn E. and Murray R. W. Stable and radiogenic isotopes in pore waters from Leg 127, Japan Sea. In: K.A. Pisciotto, J.C. Ingle, Jr., M.T. von Breymann, J. Barron et al. Proceedings of the Ocean Drilling Program, Scientific Results Vol. 127/128, ODP (Ocean Drill. Prog.), College Station, Texas (1992), pp. 635–650 (Part I) .
Klein C. and C.S. Hurlbut, Jr. (黃怡禎譯). Manual of Mineralogy 21st ed. 地球科學文教基金會, 438-439 (2000).
Hensen C., Kasten S., Zabel M. and Schulz H. D. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochim. Cosmochim. Acta. 62, 455-464 (1998).
Chi W. C., Reed, D. L., Liu, C. S. and Lundberg, N. Distribution of the bottom-simulating reflector in the offshore Taiwan collision zone. TAO. 9(4), 779-794 (1998).
Chow, J., Lee J. S., Sun R., Liu C. S. and Lundberg N. Characteristics of the bottom simulating reflectors near mud diapirs: offshore southwestern Taiwan. Geo-Marine Lett. 20, 3-9 (2000).
Coleman D. and Ballard R. D. A highly concentrated region of cold hydrocarbon seeps in the Southeastern Mediterranean Sea. Geo-Mar Lett. 21:162–167 (2001).
Covey M. C. Lithofacies analysis and basin reconstruction, Plio-Pleistocene western Taiwan foredeep. Petroleum Geology of Taiwan, 20, 53-83 (1984).
Crank J. The Mathematics of Diffusion. Clarendon Press, Oxford, United Kingdom. 414 pp (1975).
Dean W. E. and Schreiber B. C. Authigenic barite, Leg 41 Deep Sea Drilling Project. In: Y. Lancelot, E. Seibold et al.Initial Reports of the Deep Sea Drilling Project Vol. 41, U.S. Gov. Print. Off., Washington, D.C. (1978), pp. 915–931.
Dehairs, F., Goeyens L., Stroobants N., Bernard P., Goyet C., Poisson A. and R. Chesselet. On suspended barite and the oxygen minimum in the Southern Ocean, Global Biogeochem. Cycles, 4, 85– 102 (1990).
Dehairs, F., Chesselet R. and Jedwab J., Discrete suspended particles of barite and the barium cycle in the open ocean, Earth Planet. Sci. Lett, 49, 528–550, (1980).
Dickens, G.R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir. Geochim. Cosmochim. Acta 65, 529–543 (2001).
Dimitrov L. I. Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Science Reviews 59, 49–76 (2002).
Dymond J., Suess E. and Lyle M. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography 7,163–181 (1992).
Dymond, J., and Collier R. Particulate barium fluxes and their relationships to biological productivity, Deep Sea Res., Part II, 43, 1283–1308 (1996).
Eagle M., Paytan A., Arrigo K. R., Dijken G. and Murray R. W. A comparison between excess barium and barite as indicators of carbon export, Paleoceanography, 18, 1, doi:10.1029/2002PA000793 (2003).
Francois, R., Honjo S., Manganini S. J. and Ravizza G. E. Biogenic barium fluxes to the deep sea: Implications for paleoproductivity reconstruction, Global Biogeochem. Cycles, 9, 289–303 (1995).
de Lange G. J., van Os B., Pruysers P. A., Middelburg J. J., Castradori D., van Santvoort P., Muller P.J., Eggenkamp H. and Prahl F.G. Possible early diagenetic alteration of palaeo proxies, NATO ASI Series I 17, 225-258 (1994).
de Lang G. J. Distribution of various extracted phosphorus compounds in the interbedded turbiditic/ pelagic sediments of the Madeira Abyssal Plain, eastern North Atlantic. Mar. Geol. 109, 115-139 (1992).
Ganeshram R., Francois R., Commeau J. and Brown-Leger S. L. An Experimental Investigation of Barite Formation in Seawater. Geochimica et Cosmochimica Acta, 67, 14, 2599–2605 (2003).
Ginsburg G. D. and Soloviev V. A. Mud volcano gas hydrates in the Caspian Sea. Bull Geol Soc Denmark 41: 95–100 (1994).
Goldberg E. D. and Arrhenius, G. Chemistry of pelagic sediments. Geochimica et Cosmochimica Acta 13, 153–212 (1958).
Hedberg H. D. Relation of methane generation to undercompacted shales, shale diapers, and mucvolcanos. AAPG Bull. 58(4), 661-673 (1974).
IPCC Working Group I, Climate change: Scientific Basis, Cambridge University, Longon (2001).
Kopf, A, J. Significance of mud volcanism. Rev. Geophys. 40, 1-51 (2002).
Kulm L.D. and von Huene R. In: Initial Reports of the Deep Sea Drilling Project Vol. 18, U.S. Gov. Print. Off., Washington, D.C. (1973), p. 1077.
Kvenvolden K. A. and Bruce Rogers W. Gaia’s breath—global methane exhalations. Marine and Petroleum Geology 22, 579–590 (2005).
Kvenvolden, K. A. Methane hydrate—a major reservoir of carbon in the shallow geosphere. Chem. Geol. 71, 41–51 (1988).
Kvenvolden K. A. A review of the geochemistry of methane in natural gas hydrate. Org. Geochem. 23, 997– 1008 (1995).
Kvenvolden K. A. Methane hydrate in the global organic carbon cycle. Terra Nova 14, 302–306 (2002).
Liu C. S., Huang I. L. and Teng L. S. Structural features off southwestern Taiwan. Marine Geology, 137, 305-319 (1997).
MacDonald, G.J. Role of methane clathrates in past and future climates. Clim. Change 16, 247–281 (1990).
Mazurenko L. L. and Soloviev V. A., Worldwide distribution of deep-water fluid venting and potential occurrences of gas hydrate accumulations. Geo-Mar Lett 23: 162–176 (2003).
Mazurenko L. L., Soloviev V. A., Gardner J. M. and Ivanov M. K. Gas hydrates in the Ginsburg and Yuma mud volcano sediments (Moroccan Margin): results of chemical and isotopic studies of pore water. Mar. Geol. 195, 201–210 (2003).
Milkov, A. V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol. 167, 29-42 (2000).
Paytan A., Mearon S., Cobb K. and Kastner M. Origin of marine barite deposits: Sr and S isotope characterization, GSA, 8, 747-750, (2002).
Paytan A. Marine barite: A recorder of oceanic chemistry, productivity and circulation. Ph.D. thesis, University of California, San Diego, San Diego, CA, (1996).
Paytan A., Kastner, M., Martin, E. E., Macdougall, J. D. and Herbert, T. Marine barite as a monitor of seawater strontium isotope composition. Nature 366, 445–449 (1993).
Pecher I. A. Oceanography - Gas hydrates on the brink. Nature 420, 622-623 (2002).
Riedinger N., Kasten S., Groger J., Franke C. and Pfeifer K. Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin. Earth and Planetary Science Letters 241, 876–887 (2006).
Rutten A., and de Lange G.J. A novel selective extraction of barite, and its application to eastern Mediterranean sediments. Earth and Planetary Science Letters 198, 11 –24 (2002).
Schenau S. J., Prins M. A., de Lange, G. J. and Monnin, C. Barium accumulation in the Arabian Sea: controls of barite preservation in marine sediments. Geochimica et Cosmochimica Acta 65, 1545–1556 (2001).
Sloan E. D. Clathrate Hydrates of Natural Gases. Marcel Dekker, New York (1990).
Soloviev V. A., Ginsburg G. D. Water segregation in the course of gas hydrate formation and accumulation in submarine gasseepage fields. Mar Geol 137:59–68 (1997)
Suess E., von Huene R. Proceedings of the Ocean Drilling Program, Inititial Reports Vol. 112, ODP (Ocean Drill. Prog.), College Station, Texas (1988).
Suess E., Bohrmann G., Von Huene R., Linke P., Wallmann K., Lammers S. and Sahling H. Fluid venting in the Aleutian subduction zone. J Geophys Res 103:2597–2614 (1998).
Sun S. C. and Liu C. S. Mud diapirs and submarine channel deposits in offshore Kaohsiung-Hengchun, southwest Taiwan. Petrol. Geol. Taiwan 28, 1-14 (1993).
Torres M. E. Barite fronts in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology v. 127, p. 125–139, (1996).
Turekian K. K. and Tausch, E. H. Barium in deep-sea sediments of the Atlantic Ocean. Nature 201, 696–697 (1964).
von Breymann M. T., Emeis K. C. and Camerlenghi A. Geochemistry of sediments from the Peru upwelling area: results from Sites 680, 685 and 688. In: E. Suess, R. von Huene et al.Proceedings of the Ocean Drilling Program, Scientific Results Vol. 112, ODP (Ocean Drill. Prog.), College Station, Texas (1990), pp. 491–504.
Waterman L. S., Sayles F. L. and Manheim F. T. Interstitial water studies on small core samples, Legs 16, 17 and 18. In: L.D. Kulm, R. von Huene et al.Initial Reports of the Deep Sea Drilling Project Vol. 18, U.S. Gov. Print. Off., Washington, D.C. (1973), pp. 1001–1012.
Whelan J., Eglinton L., Cathles L. III, Losh S. and Roberts H. Surface and subsurface manifestations of gas movement through a N-S transect of the Gulf of Mexico. Marine and Petroleum Geology 22, 479–497 (2005).
Wilson R. D., Monaghan P. H., Osanik A., Price L. C. and Rogers M. A. Estimate of annual input of petroleum to the marine environment from natural marine seepage: transactions, Gulf Coast Association of Geological Societies. 23rd Annual Convention, Houston, TX, pp. 182–193 (1973).
Wilson R. D., Monaghan P. H., Osanik A., Price L. C. and Rogers M. A. Natural marine oil seepage. Science 184, 857–8651974..
Wood W. T., Gettrust J. F., Chapman N. R., Spence G. D. and Hyndman R. D. Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness. Nature 420, 656-660 (2002).
Woodside J. M., Ivanov M. K. and Limonov A. F. Shallow gas and gas hydrates in the Anaximander Mountains region, eastern Mediterranean Sea. In: Gas hydrates: relevance to world margin stability and climate change. Geol Soc Spec Publ 137:177–193 (1998).
Woodside J. M., Ivanov M .K. and Limonov, A. F. Neotectonics and fluid flow through seafloor sediments in the Eastern Mediterranean and Black Seas: Part I. Eastern Mediterranean SeaIOC Technical Series (Intergovernmental Oceanographic Commission, Unesco) UNESCO 1997, Paris, International, vol. 48. 128 pp. (1997).
Yang K. M., Ting H. H. and Yuan J. Structural styles and tectonic modes of Neogene extensional tectonics in southwestern Taiwan: implications for hydrocarbon exploration. Petrol. Geol. Taiwan 26, 1-31 (1991).
Yu, H. S. and Wen Y. H. Physiographic characteristics of the continental margin off southwestern Taiwan. J. Geol. Soc. China 36, 337-351 (1992).