簡易檢索 / 詳目顯示

研究生: 李璟修
Li, Ching-Hsiu
論文名稱: 固定投資比例策略在投資組合的應用
Constant Proportion Trading Strategy in Portfolio Management
指導教授: 王明隆
Wang, Ming-Long
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 42
中文關鍵詞: 固定投資比例策略
外文關鍵詞: constant proportion trading strategy, geometric Brownian motion, optimal growth strategy
相關次數: 點閱:102下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討固定投資比例策略,在假設完美市場及風險性資產價格跟隨幾何不朗寧運動的假設下,我們可以決定投資在風險性資產的最適比例。投資組合採用此比例時,會使的投資組合的成長率最大,也就是說在設定一個財富水準下,此投資組合將會以最短的期望時間達到設定的財富水準。另外,如果投資人的效用函數為對數函數時,最適投資比例的投資組合會使得投資人的效用達大最大。
    最後,本論文將以數值分析來對固定投資比例策略作更深入的探討。

    Many different investment objectives and criteria have been suggested for choosing investment strategies. The paper adopts the constant proportion trading strategy in the dynamic settings. Assuming the complete market and asset prices follow geometric Brownian motion, we can decide the optimal constant proportion invested in risky assets in a portfolio. We call a strategy with optimal constant proportion the optimal growth strategy. A portfolio with optimal growth strategy has the maximum expected growth rate and achieves the investment goal (any given wealth level) in the shortest time. As for the logarithm utility function, the optimal growth strategy reaches the maximum utility.
    The paper also compares the optimal growth strategy with all-cash, all-bond, and all-stock strategy. We also estimate the time needed for any other constant proportion strategy to beat competing strategies at given probability level. Using the empirical data, we can access to the properties of the constant proportion trading strategy.

    Chapter 1 Introduction 1 1.1 Motivation and Background 1 1.2 Objectives 3 1.3 Organization 4 Chapter 2 Literature Review 5 2.1 Introduction of Constant Proportion Trading Strategy 5 2.1.1 Definition 5 2.1.2 Heath, Orey, Pestien and Sudderth(1987) 6 2.1.3 Martin L. Leibowitz and William S. Krasker(1988) 7 2.1.4 Mark Rubinstein(1991) 8 2.1.5 Sid Browne(1998) 9 2.1.6 Sid Browne(1998) 11 2.1.7 Sid Browne(1999) 12 2.2 Other portfolio selection models 14 2.2.1 Markowitz(1952) 14 2.2.2 Roy’s Criterion 17 2.2.3 Kataoka’s Criterion 18 2.2.4 Telser’s Criterion 18 Chapter 3 Model Specifications and Methodology 20 3.1 Model Specifications 20 3.2 Probability Calculations 23 3.3 Estimating the Expected Instantaneous Return  26 Chapter 4 Numerical Results 28 4.1 Data 28 4.2 Results 30 Chapter 5 Conclusions 40 5.1 Conclusions 40 5.2 Further Research 41 REFERENCES 42

    Black, Fisher, and Robert Jones, 1987, Simplifying Portfolio Insurance, The Journal of Portfolio Management Fall, 48-51.
    Browne, Sid, 1997, Survival And Growth With A Liability:Optimal Portfolio Strategies In Continuous Time, Mathematics Of Operations Research Vol. 22 No. 2 May, 469-493.
    Browne, Sid, 1998, The Return on Investment From Proportional Portfolio Strategies, Advanced Applied Probability 30, 216-238.
    Browne, Sid, 1999, Reaching Goals By A Deadline: Digital Options And Continuous-Time Active Portfolio Management, Advanced Applied Probability 31, 551-577.
    Browne, Sid, 1999, The Risk and Rewards of Minimizing Shortfall Probability, The Journal of Portfolio Management Summer, 76-85.
    Elton, Edwin J., and Martin J. Gruber, 1995, Modern Portfolio Theory and Investment Analysis, fifth edition,(JOHN WILEY&SONS, INC).
    Etgen, Garret J., 1994, Salas and Hille’s Calculus One and Several Variables, seventh edition,(JOHN WILEY&SONS, INC).
    Hull, John C., 1998, Options, Futures, and Other Derivatives, fourth edition,(Prentice-Hall International, Inc.).
    Neftci, Salish N., 1996, An Introduction to the Mathematics of Financial Derivatives,(Academic Press).
    Oldenkamp, Bart, and Ton C.F. Vorst, 1997, Time Diversification and Option Pricing Theory:Another Perspective, The Journal of Portfolio Management Summer, 56-60.
    Orey, D. Heath, S. V. Pestine, and W. Sudderth, 1987, Minimizing Or Maximizing The Expected Time To Reach Zero, SIAM J. Control and Optimization Vol. 25 No.1 January, 195-205.
    Perold, André F., and William F. Sharpe, 1998, Dynamic Strategies for Asset Allocation, Financial Analysis Journal, January-February, 16-27.
    Roy, A.D., 1952, Safety-First and the Holding of Assets, Econometric July, 431-449.
    Rubinstein, Mark, Continuously Rebalanced Investment Strategies, 1991, The Journal of Portfolio Management Fall, 78-81.
    Sharpe, William F., Gordon J. Alexander, and Jeffery V. Bailey, 1996, Investments, sixth edition(JOHN WILEY&SONS, INC.).
    Trippi, Robert R., and Richard B. Harriff, 1991, Dynamic Asset Allocation Rules:Survey and Synthesis, The Journal of Portfolio Management Summer, 19-26.

    下載圖示 校內:立即公開
    校外:2003-06-27公開
    QR CODE