研究生: |
莊君毅 Zhuang, Jui-Yi |
---|---|
論文名稱: |
二硫化鉬基混合過渡金屬硫化物(硫化鐵、硫化鈷、硫化鎳)作為固態氧化物燃料電池陽極材料之研究 Studies of using MoS2-based mixed transition metal sulfides (Iron sulfide,Cobalt sulfide,Nickel sulfide)as anodes of SOFCs |
指導教授: |
方冠榮
Fung, Kyan-Zong |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 113 |
中文關鍵詞: | 固態氧化物燃料電池 、過渡金屬硫化物 |
外文關鍵詞: | Transition metal sulfide, Solid oxide fuel cell |
相關次數: | 點閱:87 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在使用天然氣為燃料的應用上,電極性能是極關鍵的因素,必須具有高電子導電率及高催化燃料的特性。然而,目前面臨最大的問題是,天然氣中含有為量不少的硫化氫,若以傳統的Ni-YSZ做為固態氧化物燃料電池的陽極,相當容易受到硫化氫毒化,導致電池性能下降,因此,尋找一種可使用於含有硫化氫為燃料的陽極材料,甚而提高其電池效能,為發展固態氧化物燃料電池應用範圍之重要研究方向。
過渡金屬硫化物幾乎皆具有高導電率與催化硫化氫的能力,因此深具潛力以作為含硫化氫氣氛燃料的電極,本研究選用二硫化鉬、硫化鐵、硫化鈷、及硫化鎳來製備SOFC的陽極材料。其中,二硫化鉬為一具有n-type導電性質且具有高催化硫化氫特性的材料,然而其電子導電率偏低(800oC約只有1S/cm),而過渡金屬硫化物(硫化鐵,硫化鈷,硫化鎳)具有較高的電子導電率(800oC有100~400 S/cm),因此,本論文研究以二硫化鉬與過渡金屬硫化物做為固態氧化物燃料電池之複合陽極材料。首先,探討在不同氣氛下,複合過渡金屬硫化物的相穩定性與導電率之變化,選擇之氣氛、時間、溫度條件分別為:純氬氣、純氫氣、90%氫氣-10%硫化氫三種氣氛;24小時、48小時;800℃。此三種系統導電率皆隨著溫度升高而有稍微上升的趨勢,其中以 MoS2-CoS系統最高(800oC約為64 S/cm)。
本研究也進行MoS2-MS(M=Fe,Co,Ni)的膨脹係數、硫化氫催化效率、陽極過電壓行為、與釔安定氧化鋯(YSZ)反應時之高溫穩定性等性質量測。MoS2-MS(M=Fe,Co,Ni)試樣從室溫加熱至1000oC~1100oC時,藉由其尺寸隨溫度增加的變化量,可計算出MoS2-FeS的熱膨脹係數約22 x 10-6 K-1;MoS2-CoS約為8.5 x 10-6 K-1;MoS2-Ni3S2約9 x 10-6 K-1,後兩者與釔安定氧化鋯有較接近的熱相容匹配性。陽極材料MoS2-MS (M=Fe,Co,Ni)與常用的電解質材料(YSZ) 於800oC氬氣氣氛下熱處理48小時經X光繞射觀察並無雜相生成,顯示兩者之間有良好的熱化學相容性。
針對硫化氫催化實驗,發現含有二硫化鉬催化劑時,硫化氫開始分解的溫度下降至350oC,說明二硫化鉬具有降低催化硫化氫活化能的功效,此外,藉由對MoS2-MS (M=Fe,Co,Ni)-20wt%YSZ/YSZ/Pt半電池介面的陽極過電壓量測,與傳統Ni-YSZ做比較,顯示在10%硫化氫-90%氫氣氣氛下,複合過渡金屬硫化物的陽極過電壓值皆有下降的趨勢,而傳統Ni-YSZ有很明顯的上升。當試樣操作溫度為800oC並通入600mA/cm2的電流密度後,在10%硫化氫-90%氫氣氣氛中,MoS2-Ni3S2-20wt%YSZ與MoS2-CoS-20wt% YSZ有相近的陽極過電壓值約為650mV,然而,Ni-YSZ在通入電流密度280 mA/cm2已達將近1000mV。說明複合過渡金屬硫化物催化劑對於硫化氫的催化轉換有正面貢獻,並表現出其可行性。最後,以交流阻抗分析儀量測傳統電極Ni-YSZ(60:40 vol%)在10%硫化氫-90%氫氣氣氛的導電率,發現導電率約為10 S/cm左右,且隨著時間增加並無下降的趨勢。
根據本研究對MoS2-MS (M=Fe,Co,Ni)結構與材料特性分析以及半電池過電壓測試結果,複合過渡金屬硫化物有潛力成為以硫化氫為燃料的陽極材料。
Having high electrical conductivity and high fuel catalytic property is the key issue to select adequate electrode material for solid oxide fuel cell applications. Especially when small amount of hydrogen sulfide is present in common fuels like natural gas, the sulfidation of electrode material needs to be considered. Thus, searching for proper materials that are stable and functional in the H2S-containing environment is imperious and necessary.
Most transition metal sulfides have high electrical conductivity, and provide with the ability of reforming hydrogen sulfide. Hence, they are the potential anode materials for SOFC applications. In this work, molybdenm disulfide, iron sulide, cobalt sulfide, and nickel sulfide was investigated as the anode material of SOFCs. Among them, molybdenm disulfide is an n-type semiconductor and have high hydrogen sulfide reforming capability. However, the electrical conductivity of molybdenum disulfide is only around 1 S/cm at 800℃ in reducing atmosphere. The transition metal sulfides, such as iron sulfide, cobalt sulfide, and nickel sulfide, have conductivity of 100~400 S/cm at 800℃ in reducing atmosphere. Therefore, MoS2 was mixed with transition metal sulfide individually to enhance its conductivity in this study. The structural variation, electrical conduction, and polarization were examined using XRD, AC-impedance spectroscopy and current-interrruption methods.
The results show that most MoS2-transition metal sulfides mixtures remain unreacted two phases. Except for MoS2-FeS system, FeMo2S4 with defective NiAs structure was observed when the mixture of MoS2 and FeS was heated in reducing atmosphere at 800oC for 48h. Based on the results from ESCA analysis, the formation of FeMo2S4 is mainly due to the presence of divalent iron ions and trivalent molybdenum ions. The compatability of mixed sulfide with yttria stabilized zirconia(YSZ) electrolyte were examined using Dilamatic instrument. The thermal expansion coefficient of YSZ was found to be 10.26 ×10-6K-1 . Among sulfide mixtures, MoS2-FeS system exhibits very high thermal expansion coefficient of 22.09 ×10-6K-1 due to the contribution of FeS. For the systems of MoS2-Ni3S2 and MoS2-CoS, the thermal expansion coefficients were measured to be 10.96×10-6K-1 and 8.56×10-6K-1, respectively. Thus, MoS2-Ni3S2 and MoS2-CoS systems are thermally compatible with YSZ. The results of overpotential measurements indicate that the polarization of sulfide anode is significantly less than typical Ni-YSZ anode. The high polarization of Ni-YSZ is caused by the formation of nickel sulfide that suppress the path of gas transport. The reduced polarization in mixed sulfides is contributed by the presence of MoS2. According to H2S reforming experiments, it was observed that the decomposition of H2S started at temperature as low as 350oC when MoS2 is present. Without MoS2, the thermal decomposition of H2S began at 500oC.
Based on the results in this study and comparing the phase stability, polarization behavior,and H2S catalytic properties of mixed sulfides versus Ni-YSZ, MoS2-Ni3S2 and MoS2-CoS may be potential anode materials for SOFC applications when the H2S-containing fuel is used.
1.L.Carrette,K.A Friedrich,U. Stimming,Chem. Phys.chem.,1,p.162-193 ,(2000)
2.B.C.H.Steele and A.Heinzel,Nature,414,p.345-352,(2001)
3.K.Kendall,International Materials Reviews,50,(5),p.257-264,(2005)
4.S.M.Haile,D.A.Boysen,C.R.I.Chisholm,and R.B.Merle,Nature,410, p.910-913, (2001)
5.Z. Cai, T. N. Lan, S. Wang and M. Dokiya,Solid State Ionics, p.583-590,(2002)
6.W.R.Grove,On voltaic series and the combination of gases by platinum, Pkil. Mag. Ser. (3),14,p.127-130,(1839)
7. J.Larminie and a.Dicks:”Fuel cell systems explained”,chapter 2,Wiley, UK,p.25-43, (2003)
8.余河潔:”以鍶摻雜作為中溫固態氧化物燃料電池陰極材料之研究”,國立成功大學材料科學及工程學系博士論文,(2005)
9. T.Ishihara,M.Honda,T.Shibayama,H.Minami,H.Nishiguchi,and Y.Takita,J.Am. Ceram.Soc.,145,p.3177,(1993)
10. V.V. Krishnan, S.McIntosh, R. J. Gorte and John M. Vohs, “Measurement of electrode overpotentials for direct hydrocarbon conversion fuel cells,” Solid State Ionics ,166,p.191-197,(2004)
11. S. Park, R. Cracium and J. M. Vohs, “Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell,” Applied Catalysis A: General 200 , p.55-61,(2000)
12. S.P.Simner,M.D.Anderson,and J.W.Stevenson,J.Am.Ceram.Soc.,87,(8), p.1471- 1476,(2004)
13. T.Ishihara,M.Honda,T.Shibayama,H.Minami,H.Nishiguchi,and Y.Takita,J.Am. Ceram.Soc.,145,p.3177,(1993)
14.S.M.Haile,Acta Materialia,51,p.5981-6000,(2003)
15.Y.Matsuzaki,I.Yasuda,Solid State Ionics 132 p.261-269 ,(2000)
16.T.J.Kirk and J.Winnick,J.Electrochem.Soc.,140,p.3494,(1993)
17.D.Peterson and J.Winnick,J.Electrochem.Soc.,143,L55,(1996)
18. D.Peterson and J.Winnick,J.Electrochem.Soc.,145,p.1449,(1998)
19.M.Liu,P.He,J.L.Luo,A.R.Sanger,ang K.T.Chuang,J.P. Source,p.20,(2001)
20.V.Yentekakis and C.G.Vayenas,J.Electrochem.Soc.,136,p.996,(1989)
21.H.He,R.J.Gorte,J.M.Vohs,Electrochemical and Solid-state Letters,8 ,(6),p.A279- A280, (2005)
22.D. J.Vaughan,J. R.Craig,Mineral chemistry of metal sulfide,chapter4, Cambridge, (1978)
23.V.Vorontsov,W.An,J.L.Luo,A.R.Sanger,K.T.Chuang,J.Power Sources ,179, p.9-16
(2008)
24.O.E.Beqqali,I.Zorkani,F.Rogemond,H.Chermette,R.B.Chaabane,M.Gamoudi,G.Guillaud,Synthetic Metals, 90, p.165-172 ,(1997)
25.D. J.Vaughan,J. R.Craig,Mineral chemistry of metal sulfide,chapter2, Cambridge, (1978)
26.M.Potoczek,K.Przybylski,M.Rekas,J.Physics and Chemistry of Solids ,67, p.2528-2535, (2006)
27. M.Potoczek,K.Przybylski,M.Rekas,J.Physics and Chemistry of Solids ,67, p.564-569, (2007)
28.H. Wang,”Kinetic studies of some solid-state reaction of metal sulfides”,chapter2
29.D. J.Vaughan,”Sulfide mineralogy and geochemistry”,chapter7,(2006)
30.D. J.Vaughan,James R.Craig,Mineral chemistry of metal sulfide,chapter5, Cambridge,(1978)
31.D.Peterson,J.Winnick, J Electrochem Soc, 145,(5):1,p.449 ,(1998)
32.T.W.Yi,Z. Qin,J Chinese Ceram Soc., 34,(8),p.970 (2006)
33.K.Y.Chuang,J.C.Donini,A.R.Alavov,Int J.Hydrogen Energy, 25, p.887 ,(2000)
34. K.Y.Chuang,J.C.Donini,A.R.Alavov,Int J.Hydrogen Energy,26 ,p.103, (2001)
35.Z. Li,C. J.Jun,G.L.Wei,J.L.Luo,K.T.Chuang,J Chem Ind Eng.55(10) ,p.732, (2004)
36.L.Aguilar,S.Zha,Z.Cheng,J.Winnick,M.L.Liu,J Power sources 135 ,p.17-24,(2004)
37.T.Chivers,J.B.Hyne,C.Lau,Int.J.Hydrogen Energy,vol.5,p.499-506, (1980)
38.S.Zha,Z.Cheng,M.Liu,J.Elec.Soc,154,(2),p.B201-B206,(2007)
39.K.Tabata and S.Kohiki,J.Materials Science,22,p.3781,(1987)
40.廖聖茹,黃依蘋,林仁章,黃瑞呈:”多孔性奈米材料比表面積/孔隙率量測技術”,工業材料,190期,p.115,(2002)
41.王常珍,固體電解質和化學傳感器,冶金工業出版社,北京,p.33-38,(2000)
42.史美倫,交流阻抗原理與應用,國防工業出版社,北京,(2001)
43.G.L.Wei,J.L.Luo,A.R.Sanger,K.T.Chuang,J. Electro. Soc.,151,(2) ,p.A232-A237, (2004)
44.S.B.Alder,J.Electro.Soc.,(5),149,p.E166-S172,(2002)
45.D.Y.Wang,A.S.Nowick,J.Elevyro.Soc.,7,126,p.1155-1165,(1979)
46.I.Riess,M.Godickemeier,L.J.Gauckler,Solid state Ionics,90,p.91-104, (1996)
47.E.M.Dudnik,V.K.Oganesyan,Institute of materials problems,Academy of Sciences,Ukr SSR Translated from Poroshkovaya Metallurgiya,No.2(38)
48.S.Harris,R.R.Chianelli,J.Catalysis ,98,p.17-31,(1986)
49.A.Petric,H.Ling,J.Am.Ceram.Soc.,90,(5),p.1515-1520,(2007)
50.P.Vaqueiro,M.L.Kosidowski,A.V.Powell,Chem.Mater.,14,p.1201-1209,(2002)
51.R.Shreekala,M.Rajeswai,A.Ghosh,A.Goyal,J.Y.Gu,
C.Kwon,Z.Trajanovic,T.Boettcher,R.L.Greene,
R.Ramesh,T.Venkatesan,Appl.Phys.Lett.,71,p.282, (1997)
52.P.A.COX,Transition Metal Sulfide,(1981)
53.M.Gong,X.Liu,J.Trembly,C.Johnson,J.Power sources,168,p.289-298, (2007)
54.T.Chivers,J.B.Hyne,C.Lau,J.Hydrogen Energy,5,p.499-506,(1980)
55.A.J.Melmed,T.E.Madey,Surface Science ,131,p.433-447,(1983)
56.S. R.Shatynski,Oxidation of Metals,11,6,(1977)
57.Y.M.,I.Yasuda,Solid state Ionics,132 ,p.261-269,(2000)
58.N.U.Pujare,K.W.Semkow,and A.F.Sammells,J.Electrochem.Soc.,134,p.2639, (1987)
59.G. Zheng, J. Wu, C. Pan. Carbon ,42(14),p.2839~2847,(2004)
60. G.Chen, C.Wu, W.Weng et al. Polymer, 44,(6),p.1781~1784, (2003)
61. D.S. Mclachlan, M. Blaszkiewics, R.E. Newnham,Electrical resistivity of composites . J.American Ceramics Society, 73,(8),p.2187~2203,(1990)
62. H.J.Juretchke,R.Landayer,J.A.Swanson,J.A.Physics, 27,p.838,(1956)
63.K.Fukuda,M.Dokiya,T.Kameyama and Y.Kotera,Ind.Eng.chem.Fundam ,17,p.243, (1978)
64.K.Lichtenecker,Phys.Z.,27,p.115, (1926)
65.O.Wiener,Phys.Z.,5,p.332 ,(1904)
66. O.Wiener,Abh.Leipz.Akad.,32,p.509, (1912)
67.Ryan O’Hayre,Fuel Cell Fundamental,Chapter 4,p.107,(2005)
68.周玉,陶瓷材料學,第四章,北京,p.90,(2004)
69.P.Vaq,M.L.Kos,A.V.Pow.,Chem.Mater.,14,p.1201~1209,(2002)
70. K. Yang, J.H. Shen, K.Y. Yang, I.M. Hung, K.Z. Fung, M.C.Wang,J.P.Sources, 159, 1,p. 63-67,(2006)