| 研究生: |
黃俊傑 Huang, Chun-Chieh |
|---|---|
| 論文名稱: |
並聯式工具機於離心泵葉片加工性能之探討 Investigation on Machining Performance of Centrifugal Pump Impellers with Parallel Type Machine Tool |
| 指導教授: |
洪振益
Hung, Chen-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 並聯式工具機 、離心泵葉片 、逆向運動分析 、工作空間 |
| 外文關鍵詞: | parallel type machine tool, centrifugal pump impellers, inverse kinematics, workspace |
| 相關次數: | 點閱:98 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
並聯式工具機具備加工複雜曲面之能力,亦具有高速化、高精度之優點。而離心泵葉片為三維扭轉曲面,因此葉片加工較為困難,設計時除考慮葉輪效率外,亦需考慮葉輪加工問題。本研究有鑑於此,運用並聯式工具機加工離心泵葉片,並判斷加工之可行性。
離心泵葉片外廓係由五軸創成加工法結合數值曲線Rational B-Spline建構而成,由CFD軟體TASCflow計算離心泵之流場性能,並以具優秀效能之離心泵葉輪做為並聯式工具機加工之工件。
本研究由五軸創成加工規劃之加工路徑做為並聯式工具機之刀具路徑,由幾何限制(致動器長度限制、接頭旋轉角度限制、致動器間干涉)及非幾何限制(Jacobian矩陣行列式值)來判斷加工之可行性。計算結果發現可動平台之接頭旋轉角度過大,因此本研究提出二方法改善此情形(1)接頭安裝具傾斜角度(2)分段加工。本研究亦對不同刀具傾斜角及不同接頭旋轉角度限制做工作空間分析。
研究結果發現在接頭安裝具傾斜角度與分段加工時,搭配第四軸從動及工件旋轉情形下,幾何及非幾何限制皆在合理範圍內,且加工速度亦較五軸加工機提昇。分析結果指出本研究以接頭安裝具傾斜角度及分段加工時,加工離心泵葉片具有優越之速度與可行性。
The parallel type machine tool has the ability to process complicated curved surface, also has the advantages of high speed and high-accuracy. The present approach considers the difficulty to manufacture when the centrifugal pump impellers are composed of the three-dimension to turn back the curved surfaces. This design suggest using the efficiency of the impeller to improve the impeller manufacturing. For this purpose, this research proposes a specific method of parallel type machine tool and centrifugal pump impellers that raise its manufacturing feasibility.
Since the contour of centrifugal pump impellers consist of five-axis manufacturing process that combines numerical curve of rational B-spline as well as its applications in calculating flow centrifugal pump’s performance by TASCflow of CFD. With this object, it conducts centrifugal pump impellers of execellent performance for workpiece of parallel type machine tool which is made up of centrifugal pump impellers.
The research uses of geometric constraints and non-geometric constraints to determine feasibility of manufacturing work. The result of calculation shows the situation that joint angle of moving platform is too big to work. The proposing methods of situation are (1) install the joint are at an angle (2) manufacture in dividing sections.
The results of this research shows the geometric constraints and non-geometric constraints are all in limit range. Meanwhile, the speed of manufacture is fairly better than five-axis manufacturing process, under the situation of matching the fourth axle and workpiece to rotate. In this research, the results indicate when install the joint are at an angle and manufacture of divide section, those which are manufactured in the centrifugal pump impellers for superior speed and feasibility.
[1] Church, G.., Centrifugal Pump and Blowers, Wiley, New York, 1944.
[2] Stepanoff, A.J., Centrifugal and Axial Flow Pumps, Wiley, New York, 1957.
[3] Pfleiderer, Die Kreiselpumpen, Springer-Verlag, Berlin, 1961.
[4] Tuzson, J., Centrifugal Pump Design, Wiley, New York, 2000.
[5] Oh, H. W., and Chung, M. K., “Optimum values of design variables versus specific speed for centrifugal pumps,” Proceedings of the Institution of Mechanical Engineers-A-Journal of Power and Energy, Vol. 213, pp. 219-226, 1999.
[6] Al-Zubaidy, S. N., “A Proposed Design Package for Centrifugal Impellers,” Computers & Structures, Vol. 55, No. 2, pp. 347-356, 1995.
[7] Zangeneh, M., “TURBOnews Issue no. 1,” Advance Design Technology, 2004.
[8] Zangeneh, M., “TURBOnews Issue no. 2,” Advance Design Technology, 2005.
[9] Goto, A., and Zangeneh, M., “Hydrodynamic Design of PumpDiffuser Using Inverse Design Method and CFD,” ASME Journal of Fluids Engineering, Vol. 124, pp. 319-328, 2002.
[10] Goto, A., Nohmi, M., Sakurai, T., and Sogawa, Y., “Hydrodynamics Design System for Pumps Based on 3-D CAD, CFD, and Inverse Design Method,” ASME Journal of Fluids Engineering, Vol. 124, pp. 329-335, 2002.
[11] Chen, S. L., and Wang, W. T., “Computer Aided Manufacturing Technologies for Centrifugal Compressor Impellers,” Journal of Materials Processing Technology, Vol. 115, Issue. 3, pp. 284-293, 2001.
[12] Morishige, K., and Takeuchi, Y., “5-Axis Control Rough Cutting of an Impeller with Efficiency and Accuracy,” IEEE Paper Robotics and Automation, Vol. 2, pp. 1241-1246, 1997.
[13] 莊禮彰,“離心式壓縮機葉輪五軸加工規劃”,台灣大學機械工程研究所博士論文, 2003.
[14] Wu, C. H., “A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial, Radial, and Mixed Flow Type,” NACA TN2604, 1952.
[15] Raj, D., and Swim, W. B., “Measurement of the Mean Flow Velocity and Fluctuations at the Exit of a F-C Centrifugal Fan Rotor,” Journal of Engineering for Power, Vol. 103 No. 2, pp. 393-399, 1981.
[16] Han, C., “Navier-Stokes Analysis of Three-Dimensional Unsteady Flows Inside Turbine Stages,” AIAA paper 28th Joint Propulsion Conference and Exhibit, No. 92-3211, Nashville, TN, July 1992.
[17] Pak, E. T., and Lee, J. C., “Performance and Pressure Distribution Changes in a Centrifugal Pump under Two-Phase Flow,” Proceedings of the Institution of Mechanical Engineers-A-Journal of Power and Energy, Vol. 212, pp. 165-171, 1998.
[18] Su, S. P., Chen, S. H., Lee, L. C., and Hwang, T. Y., “The Use of CFD in Turbomachinery Applications,” Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol. 32, No. 1, pp. 1-24, 2000.
[19] 黃福居,“全三維軸流風扇葉片最佳化設計”,成功大學機械工程研究所碩士論文,2001.
[20] Dawes, W. N., Dhanasekaran, P. C., Kellar, W. P., and Savill, A. M., “Reducing Bottlenecks in the CAD-to-Mesh-to-Solution Cycle Time to Allow CFD to Participate in Design,” ASME Journal of Turbomachinery, Vol. 123, 2001.
[21] Gonza´lez, J., Ferna´ndez, J., Blanco, E., and Santolaria, C., “Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump,” ASME Journal of Fluids Engineering, Vol. 124, pp. 348-355, 2002.
[22] Majidi, K., “Numerical Study of Unsteady Flow in a Centrifugal Pump,” ASME Journal of Turbomachinery, Vol. 127, pp. 363-371, 2005.
[23] Stewart, D., “A Platform with Six Degrees of Freedom.” Proceedings of the Institution of Mechanical Engineering, Vol. 180, part 1, No. 5, pp. 371-386, 1965-1966.
[24] Fihter, E. F., “Stewart Platform-base Manipulator:General Theory and Practical Construction,” International Journal of Robotics Research, Vol. 5, pp.157-186, 1986.
[25] Nanua, P., Waldron, K.J., and Murthy, V., “Direct Kinematic Solution of a Stewart Platform”, IEEE Transactions on Robotics and Automation, Vol.6, No.4, pp. 438-444 , 1990.
[26] Nguyen, C. C., Zhou, Z. L., and Antrazi, S. S.,“Efficient Computation of Forward Kinematics and Jacobian Matrix of a Stewart Platform-Based Manipulator”, IEEE Proceedings of Southeast conference, Vol. 2 ,pp. 869-874, 1991.
[27] Geng, Z., and Haynes, L., “Neural Network Solution for the Forward kinematics Problem of a Stewart Platform”, Proceedings of the 1991 IEEE International Conference on Robotics and Automation, pp. 2650-2655, 1991.
[28] Ting, Y., Chen, Y. S., and Wang , S. M.,“Task-Space Control Algorithm for Stewart Platform” Decision and Control, Vol. 4, pp. 3857-3862, 1999.
[29] Wang, Z., Wang, Z., Liu, W., and Lei, Y.,“A study on workspace, boundary workspace analysis and workpiece positioning for parallel machine tools,” Mechanism and Machine Theory, Vol. 36, pp. 605-622, 2001.
[30] 李乃華,王金敏,曾維川,王惠娟,“Stewart 並聯機構連桿干涉檢測算法”,機械設計,第20第12期,第49-52頁,2003.
[31] Tsai, M. S., Shiau, T. N., Tsai, T. J., and Chang ,T. H., “Direct kinematic analysis of a 3-PRS parallel mechanism,” Mechanism and Machine Theory, Vol. 38, pp.71-83, 2003.
[32] Tsai, K. Y., and Lin, J. C., “Determining the compatible orientation workspace of Stewart-Gough parallel manipulators,” 第八屆機構與機械設計研討會, 2006.
[33] Li, Y., and Xu, Q., “Kinematic analyisi of a 3-PRS parallel manipulator,” Robotics and Computer-Integrated Manufacturing, Vol.23, No.4, pp.395-408, 2007.
[34] Arai, T., Cleary, K., and Nakamura, T., “Design, analysis and construction of a prototype parallel link manipulator,” IEEE International Workshop on Intelligent Robots and Systems, Vol. 1, pp.205-212, 1990.
[35] Kim, D. I., Chung, W. K., and Youm, Y., “Geometrical Approach for the Workspace of 6-DOF Parallel Manipulators,” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, pp.2986-2991, 1997.
[36] Merlet, J. P., “Determination of 6D workspace of Gough-type parallel manipulator and comparison between different geometries,” The International Journal of Robotics Research, Vol. 18, No. 9, pp. 902-916, 1999.
[37] Bonev, I. A., and Ryu, J., “A new approach to orientation workspace analysis of 6-DOF parallel manipulator,” Mechanism and Machine Theory, Vol. 36, pp.15-28, 2001.
[38] 陳政雄,“並聯式機構工具機”,機械月刊,第25第3期,第420-433頁,1999.
[39] okuma公司型錄
[40] 陳福鶱,“六軸平台的奇異姿態規避法及路徑規劃研究”,成功大學機械工程研究所碩士論文,1999.
[41] 黃以文、賴美玲,“並聯式機構工具機之運動架構和分析方法”,機械月刊,第26第3期,第392-403頁, 2000.
[42] 張燦輝、許日榮、古有彬、陳冠文,“並聯式機構工具機之發展”,機械工業雜誌,第204,第104-116頁,2000.
[43] 陳浩瑩,“離心泵葉形曲線於流場特性及結構強度影響之探討”,成功大學機械工程研究所碩士論文,2006.
[44] Karassik, I. J., Messina, J. P., Cooper, P., and Heald, C.C., Pump Handbook, McGraw-Hill, New York, 2001.
[45] 陳朝光,王明庸,黃泰翔,“機械設計制圖”,高立出版社,1997.
[46] 吳坤憲,“結合創成加工與流場計算之離心泵葉片優化設計”,成功大學機械工程研究所碩士論文,2002.
[47] 黃彥博,“應用有理樣線法於離心流葉片之優化設計”,成功大學機械工程研究所碩士論文,2003.
[48] 邱盟勝,“離心泵葉片五軸加工規劃與流場優化”,成功大學機械工程研究所碩士論文,2004.
[49] 莊翔智,“離心泵設計參數與五軸加工規劃之探討”,成功大學機械工程研究所碩士論文,2005.
[50] 康兆安,“TRR-XY混合式虛軸工具機之曲面插補原理及其電腦輔助製造系統研究”, 成功大學製造工程研究所碩士論文,2000.
[51] Sandor, G. N., and Erdman, A. G., Advanced mechanism design : analysis and synthesis, Prentice-Hall , New Jersey , 1984.
[52] Wendlandt, J. M., and Sastry, S. S., “Design and control of a simplified Stewart platform for endoscopy,” Proceedings of the 1994 Conference on Decision and Control, pp. 357-362, 1994.