研究生: |
鄭宇志 Cheng, Yu-Chih |
---|---|
論文名稱: |
氮化鎵/氮化鋁鎵系氫氣感測器之研製 Fabrication of GaN/AlGaN Based Hydrogen Gas Sensors |
指導教授: |
劉文超
Liu, Wen-Chau |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 125 |
中文關鍵詞: | 鈀,奈米粒子 、紫外光,氫氣感測器 、蕭特基二極體 、粗糙度 |
外文關鍵詞: | Palladium, Surface treatment, Nanoparticles, UV, Hydrogen sensor, Schottky diode, roughness |
相關次數: | 點閱:85 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,吾人研製一系列氮化鎵/氮化鋁鎵蕭特基二極體式氫氣感測器元件,並在感測區域分別以過氧化氫處理在氮化鎵表面生成自然氧化層及利用紫外光還原氯化鈀(PdCl2)形成之鈀奈米粒子來製作元件,結果發現可大幅的提升感測器元件的靈敏度,並量測在空氣中通入氫氣濃度及控制濕度時元件之電性及特性。
首先,吾人研製出三種由氮化鎵/氮化鋁鎵系不同結構未經處理之蕭特基二極體式氫氣感測元件,由於氮化鎵及氮化鋁鎵皆是具有寬能隙之材料,所以製作出的感測器能夠擁有良好的熱穩定特性且具備廣泛的溫度操作範圍及良好的感測特性。
接著,選出最佳感測特性之元件做後續的表面處理;利用紫外光所製作出的鈀奈米粒子不僅可以減少製作蕭特基接觸時的耗能,來研製出感測器,且也可應用在一般的感測器上使蕭特基金屬薄膜表面形成奈米結構,大大的增加了感測面積及氣體的感測特性。最後利用過氧化氫對氮化鎵表面進行氧化反應,形成自然氧化層(GaXOy)增加了蕭特基能障,藉此以降低空氣中的穩態電流提升氣體感測的特性。
In this thesis, the series of GaN/AlGaN-base Schottky diode hydrogen sensors have been fabricated and studied. The native oxide (GaxOy) formed on GaN surface by H2O2 treatment and UV fabrication of palladium nanoparticles are used on Schottky sensing area to improve sensing performance. The steady-state and transient-state characteristics of device are measured under different hydrogen concentration and humidity in and air atmosphere.
Firstly, three different structure of GaN/AlGaN Schottky diode-type hydrogen sensor without treatment are fabricated and demonstrated. Because the GaN/AlGaN materials have wide band gap, the Schottky diode-type hydrogen sensors can stablely operate at higher temperature and then the best sensing performance of sensor device will be processed for subsequent research. UV fabrication of Pd nanoparticle not only decrease energy consumption for making Schottky contact but also use on general hydrogen sensor to increase sensing area. Finally, the native oxide (GaxOy) layer formed on GaN by H2O2 treatment and combined with aforementioned research.
[1] N. Yamazoe, “Toward innovations of gas sensor technology,” Sens. Actuators B, vol.108, pp. 2-14, 2005.
[2] B. Johnston, M. C. Mayo and A. Khare, Technovation, vol.25, pp. 569-585, 2005
[3] A. Kaniyoor, R. I. Jafri, T. Arockiadoss and S. Ramaprabhu, Nanoscale, vol.1, pp.382-386, 2009.
[4] S. K. Arya, S. Krishnan, H. Silva, S. Jean and S. Bhansali, Analyst,vol.137, pp.2743-2756, 2012.
[5] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field-effect transistor,” Appl. Phys. Lett., vol. 26, pp.55-57, 1975.
[6] K. I. Lundström, M. S. Shivaraman, and C. M. Svensson, “A hydrogen-sensitive Pd-gate MOS field-effect transistor,” J. Appl. Phys., vol. 46, pp.3876-3881, 1975.
[7] E. F. Mucullen, H. E. Prakasam, W. Mo, R. Naik, K. Y. S. Ng, L. Rimai, and G. W. Auner, “Electrical characterization of metal/AlN/Si thin film hydrogen sensors with Pd and Al gates,” J. Appl. Phys., vol. 93, pp. 5757-5762, 2003.
[8] I. Lundström, H. Sundgren, F. Winquist, M. Eriksson, C. K. Rülcker, and A. L. Spetz,”Twenty-five years of field effect gas sensor research in Linköping,” Sens. Actuators B, vol. 121, pp. 247-262, 2007.
[9] D. E. Williams, “Semiconducting oxides as gas-sensitive resistors,” Sens. Actuators B, vol. 57, pp. 1-16, 1999.
[10] B. Liu, D. Cai, Y. Liu, H. Li, C. Weng, G. Zeng, Q. Li, and T. Wang, “ High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and Schottky barrierst,” Nanoscale, vol. 5, pp. 2505-2510, 2013.
[11] P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of Pd/Si MIS Schottky barrier diode hydrogen detector,” IEEE Trans. Electron Devices, vol. 28, pp. 1003-1009,1981.
[12] A. Trinchi, W. Wlodarski, and Y. X. Li, “Hydrogen sensitive Ga2O3 Schottky diode sensor based on SiC,” Sens. Actuators B, vol. 100, pp. 94-98, 2004.(SCHOTTKY)
[13] K. Tsukada, T. kiwa, T. Yamaguchi, S. Migitaka, Y. Goto, and K. Yokosawa,”A study of fast response characteristics for hydrogen sensing with platinum FET sensor,” Sens. Actuators B, vol. 114, pp. 158-163, 2006.
[14] I. Rýger, G. Vanko, T. Lalinský, P. Kunzo, M. Vallo, I. Vávra, T. Plecenik, “Pt/Nio ring gate based schottky diode hydrogen sensors with enhanced sensitivity and thermal stability,” Sens. Actuators B, vol. 202, pp. 1-8, 2014.
[15] H. Y. Nie and Y. Nannichi, “ Pd-on-GaAs Schottky contact: Its barrier height and response to hydrogen,” Jpn. J. Appl. Phys., vol. 30, pp. 906-913, 1991.
[16] L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, “ A new hydrogen sensor based on a Pt/GaAs Schottky diode,” Sens. Actuators B, vol. 1, pp. 515-518, 1991.
[17] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “ Hydeogen sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001.
[18] H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor,” IEE Electron. Lett., vol. 38, pp. 92-94, 2002.
[19] W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, and C. T. Lu, “A new Pt/oxide/In0.49Ga0.51P MOS Schottky diode hydrogen sensor,” IEEE Electron Device Lett., vol. 23, pp. 640-642, 2002.
[20] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu,” A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,”Semicond. Sci. Technol., vol. 18, pp. 615-619, 2003.
[21] C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A new Pd-oxide-Al0.3Ga0.7As MOS hydrogen sensor,” IEEE Electron Device Lett., vol. 24, pp. 390-392, 2003.
[22] Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C. Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/AlGaAs-based Schottky diodes,” IEEE Trans. Electron Devices, vol. 50, pp. 2532-2539, 2003.
[23] C. W. Hung, H. L. Lin, H. I. Chen, Y. Y. Tsai, P. H. Lai, S. I. Fu, and W. C. Liu, “A novel Pt/In0.52Al0.48As Schottky diode-type hydrogen sensor,” IEEE Electron Device Lett., vol. 27, pp. 951-954, 2006.
[24] C. W. Hung, T. H. Tsai, Y. Y. Tsai, K. W. Lin, H. I. Chen, T. P. Chen, and W. C. Liu, “A hydrogen sensor based on an InAlAs material with a Pt catalytic thin film,” Phys. Scr. vol. T129, pp. 345-348, 2007.
[25] J Schalwig, G. Müller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Görgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky-diodes,” Appl. Phys. Lett., vol. 80, pp. 1222-1224, 2002.
[26] B. S. Kang, S. Kim, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Comparison of MOS and Schottky W/Pt-GaN diodes for hydrogen detection,” Sens. Actuators B, vol. 104, pp. 232-236, 2005.
[27] J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, K. W. Lin, H. I. Chen, and W. C. Liu, “Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al0.3Ga0.7As Schottky diodes,” Sens. Actuators B, vol. 117, pp. 151-158, 2006.
[28] J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diodes hydrogen sensor performance at high temperatures with different catalytic metals,” Solid-State Electron, vol. 49, pp. 1330-1334, 2005.
[29] H. Hasegawa and M. Akazawa, “Hydrogen sensing characteristics and mechanism of Pd/AlGaN/GaN Schottky diodes subjected to oxygen gettering,” J. Vac. Sci. Technol. B, vol.25, pp. 1495-1503, 2007.
[30] H. T. Wang, T. J. Anderson, B. S. Kang, F. Ren, C. Li, Z. N. Low, J. Lin, B. P. Gila, S. J. Pearton, A. Osinsky, and A. Dabrian, “Stable hydrogen sensors from AlGaN/GaN heterostructure diodes with TiB2-based Ohmic contacts,” Appl. Phys. Lett., vol. 90, pp. 252109, 2007.
[31] Z. Lin, W. Lu, J. Lee, and W. Lu, “Barrier height of Schottky contact on strained AlGaN/GaN heterostructures:Determination and effect of metal work function,” Appl. Phys. Lett. vol. 82, pp. 4364-4366, 2003.
[32] Z. Lin, H. Kim, J. Lee, and W. Lu, “Thermal stability of Schottky contacts om strained AlGaN/GaN heterostructures,” Appl. Phys. Lett. vol. 84, pp. 1585-1587, 2004.
[33] J. Song, W. Lu, J. Fynn, and G. Brandes, “Pt-AlGaN/GaN Schottky diodes operated at 800 degrees C for hydrogen sensing,” Appl. Phys. Lett. vol. 87, pp.133501, 2005.
[34] X. Z. Dang, R. Welty, D. Qiao, P. M. Asbeck, S. S. Lau, E. T. Yu, K. S. Boutrous, and J. M. Redwing, “Fabrication and characterization of enhanced barrier AlGaN/GaN HFET Fabrication and characterization of enhanced barrier AlGaN/GaN HFET,” Electron. Lett., vol. 35, pp. 602, 1999.
[35] D. Qiao, L. S. Yu, S. S. Lau, J. M. Redwing, J. Y. Lin, and H. X. Jiang, “ Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction”, J. Appl. Phys., vole. 87, pp. 801-803, 2000.
[36] I. Lundström, H. Sundgren, F. Winguist, M. Eriksson, C. K. Rülcker, and A. L. Spetz, “Twenty-five years of field effect gas sensor research in Linköping,” Sens. Actuators B, vol. 57, pp. 1-16, 1999.
[37] G. Alefeld and J. Völkl, hydrogen in metals I-basic properties, ch 12, Berlin; Springer-Verlag, 1978.
[38] G. Alefeld and J. Völkl, hydrogen in metal II-Application-oriented properties, ch 3, Berlin: Springer-Verlag, 1978.
[39] Hsu C. S., Lin K. W., Liu W. C. ,” A Wireless-Transfer-Based Hydrogen Gas Sensing System with a Pd/AlGaN/GaN Heterostructure Field-Effect Transistor (HFET),” IEEE sensors journal, vol. 13, pp. 2299-2304, 2013.
[40] M. Löfdahl, M. Eriksson, M. Johansson, and I. Lundström, “Difference in hydrogen sensitivity between Pt and Pd field-effect devices,” J. Appl. Phys., vol. 91, pp. 4275-4280, 2002.
[41] M. Armgarth, and C. Nylander, “Blister formation in Pd gate MIS hydrogen sensors,” IEEE Elecron Device Lett., vol. 3, pp. 384-386, 1982.
[42] S. Wagner, M. Hamm, and A. Pundt, “Huge hydrogen-induced resistive switching in percolating palladium thin films,” Scr. Mater, vol. 69, pp. 756, 2013.
[43] T. Kiefer, L. G. Villanueva, F. Fargier, F. Favier, and J. Brugger, “The transition in hydrogen sensing behavior in noncontinuous palladium films,” Appl. Phys. Lett., vol. 97, pp. 121911, 2010.
[44] F. Yang, S. C. Kung, M. Cheng, J. C. Hemminger, and R. M. Penner, ”Smaller is Faster and more Sensitive: The Effect of Wire Size on the Detection of Hydrogen by Single Palladium Nanowires,” Acs Nano, vol. 4, pp.5233, 2010.
[45] K. J. Jeon, J. M. Lee, E. Lee, and W. Lee, “Individual Pd nanowire hydrogen sensors fabricated by electron-beam lithography,” Nanotechnology, vol. 20, pp. 135502, 2009.
[46] B. V. Ruijven, J. F. Lamargue, D. P. V. Vuuren, T. Kram, and H. Eerens, “ Emission scenarios for a global hydrogen economy and the consequences for global air pollution,” Glob. Environ. Change-Human Policy Dimens., vol. 21, pp. 983-994, 2011.
[47] R. C. Weast, Handbok of Chemistry and Physics, CRC Press, Cleveland, 1976, pp. D-107.
[48] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating, “Sens. Actuators B, vol. 85, pp. 10-18, 2002.
[49] A. Salehi, A. Nikfarjam, and D. J. Kalantari, “Pd/porous-GaAs Schottjy contact for hydrogen sensing application,” Sens Actuators B, vol. 113, pp. 419-427, 2006.
[50] I. Lundström and L. G. Petersson, “Chemical sensors with catalytic metal gates,” J. Vac. Sci. Technol. A, vol. 14, pp. 1539-1545, 1996.
[51] C. S. Hsu, H. I. Chen, P. C. Chou, J. K. Liou, C. C. Chen, C. F. Chang, and W. C. Liu, “hydrogen-sensing properties of a Pd/AlGaN/GaN-based field-effect transistor under a nitrogen ambience,” IEEE SENS. J., vol. 13, pp. 1787-1793, 2013.
[52] T. H. Tsai, H. I. Chen, K. W. Lin, C. W. Hung, C. H. Hsu, L. Y. Chen, K. Y. Chu, and W. C. Liu, “Comprehensive study on hydrogen sensing properties of a Pd-AlGaN-based Schottky diode,” Int. J. Hydrogen Energ., vol. 33, pp. 2986-2992, 2008.
[53] Y. Gurbuz, W. P. Kang, J. L. Davidson, and D. V. Kerns, “Analyzing the mechanism of hydrogen adsorption effect on diamond based MIS hydrogem sensors,” Sens. Actuators B, vol. 36, pp. 68-72, 1996.
[54] B. P. Luther, S. D. Wolter and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sensor Actuator B, vol. 56, pp. 164-168, 1999.
[55] E. L. Murphy, and R. H. Good, “Thermionic Emission, Field Emission, and the Transition Region,” Phys. Rev., vol. 102, pp. 1464-1473, 1956.
[56] Schmitz A. C., Ping A. T., Khan M. A., Chen Q., Yang J. W., and Adesida I., “Schottky barrier properties of various metal on n-type GaN,” Semiconductor science and technology, vol. 11, pp. 1464-1467.
[57] T. H. Tsai, H. I. Chen, K. W. Lin, Y. W. Kuo, C. F. Chung, C. W. Hung, L. Y. Chen, T. P. Chen, Y. C. Liu, and W. C. Liu., “ SiO2 passivation effect on the hydrogem adsorption performance of a Pd/AlGaN-based Schottky diode,” Sensor Actuator B, vol. 136, pp. 338-343, 2009.
[58] M. Ali, V. Cimalla, V. Lebedev, V. Tilak, P. M. Sandvik, D. W. Merfeld, and O. Ambacher, “ A study of hydrogen sensing performance of Pt-GaN Schottky diodes,” IEEE Sens J., vol. 6, pp. 1115-1119, 2006.
[59] S. Y. Chiu, H. W. Huang, T. H. Huang, K. C. Liang, K. P. Liu, J. H. Tsai, and W. S. Lour, “Comprehensive study of Pd GaN metal-semiconductor-metal hydrogen sensors with symmetrically bi-directional sensing performance,” Sens. Actuator B-Chen., vol. 138, pp. 422-427, 2009.
[60] T. H. Tsai, J. R. Huang, K. W. Lin, W. C. Hsu, H. I. Chen, and W. C. Liu, “Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode,” Sens. Actuators B, vol. 129, pp. 292-302, 2008.
[61] R. P. Pelá, C. Caetano, M. Marques, L. G. Ferreira, J. Furthmüller, and L. K. Teles, “Accurate band gaps of AlGaN, InGaN and AlInN alloys calculations based on LDA-1/2 approach,” Appl. Phys. Lett., vol. 98, pp. 151907-151907-3, 2011.
[62] C. H. Moon, N. V. Myung, and E. D. Haberer, “Chemiresistive hydrogen gas sensors from gold-palladium nanopeapods,” Appl. Phys. Lett., vol. 105, pp. 223102, 2014.
[63] M. Khanuja, S. Kala, B. R. Mehta, and F. E. Kruis, “Concentration-specific hydrogen sensing behavior in monosized Pd nanoparticle layers,” Nanotechnology, vol. 20, pp. 015502, 2009.
[64] D. Gupta, D. Dutta, M. Kumar, P. B. Barman, C. K. Sarkar, S. Basu, and S. K. Hazra, Sens. Actuators, B, vol.196 , pp. 215, 2014.
[65] T. S. Huang, and J. G. Pang, “Thermal stability of the Pd-Al alloy Schottky contact to n-GaAs”, Mater. Sci. Eng. B, vol. 49, pp. 144-151, 1997.
[66] A. Imre, E. Gontier-Moya, D. L. Beke, and B. Ealet, “ Auger electron spectroscopy of the kinetics of evaporation of palladium beaded films from sapphire substrate”, Appl. Phys. A, vol. 67, pp. 469-473, 1998.
[67] H. D. Tong, A. H. J. Vanden berg, J. G. E. Gardeniers, and H. V. Jansen, “Preparation of palladium-silver alloy films by a dual-sputtering technique and its application in hydrogen separation membrane”, Thin Solid Fims, vol. 479, pp. 89-, 2005.
[68] F. Edelman, C. Cytermann, R. Brener, M. Eizenberg, R. Weil, and W. Beyer, “Interfacial processes in the Pd/a-Ge:H system,” Appl. Surf. Sci, vol. 70-71, no.2, pp.722-726, 1993.
[69] C. C. Chen, H. I. Chen, I. P. Liu, P. C. Chou, J. K. Liou, J. H. Tsai, and W. C. Liu, “An enhancement-mode pseudomorphic high electron mobility transistor prepared by an Electroless Plating (EP) and a gate-sinking approaches,” Sens. Actuators B, vol. 212, pp. 127-136, 2015.
[70] S. F. Chen, J. P. Li, K. Qian, W. P. Xu, Y. Lu, W. X. Huang, and S. H. Yu, “Large Scale photochemical Synthesis of M@TiO2 Nanocomposites (M=Ag, Pd, Au, Pt) and Their Optical Properties, CO Oxidation Performance, and Antibacterial Effect,” Nano Res, vol. 3, pp. 244-255, 2010.
[71] C. F. Lo, C. Y. Chang, B. H. Chu, S. J. Pearton, A. Dabiran, P. P. Chow, and F. Ren, “Effect of humidity on hydrogen sensitivity of Pt-gated AlGaN/GaN high electron mobility transistor based sensors,” Appl. Phys. Lett., vol. 96, pp. 232106, 2010.
[72] S. Y. Chiu, H. W. Huang, T. H. Huang, K. C. Liang, K. P. Liu, J. H. Tsai, and W. S. Lour, “Comprehensive study of Pd/GaN metal-semiconductor-metal hydrogen sensors with symmetrically bi-directional sensing performance,” Sens. Actuator B-Chen., vol. 138, pp. 422-427, 2009.
[73] I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and applications”, Sens. Actuators. B, vol.1, pp.403-426, 1981.
[74] Y. Morita, K. I. Nakamura, and C. Kin, “Langmuir analysis on hydrogen gas response of palladium-gate FET,” Sens. Actuators B, vol.33, pp. 96-99, 1996.
[75] L. G. Petersson, H. Dannetun, J. Fogelberg, and I. Lundström, “Oxygen as promoter or poison in the catalytic dissociation of H2, C2H4, and NH3 on palladium”, Appl. Surf. Sci., vol.27, pp.275-284, 1986.
[76] B. Hellsing, B. Kasemo, and V. P. Zhanov, “Kinetic of the hydrogen-oxygen reaction on platinum”, J. Catalysis, vol. 132, pp. 210-228, 1991.
[77] M. Johansson, I. Lundström, and L. G. Ekedahl, “Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing environment”, J. Appl. Phys., vol.84, pp. 44-51, 1998.
[78] R. J. Silbey, R. A. Alberty, and M. G. Bawendi, Physical Chemistry, 4th ed., New York, NY: John Wiley & Sons, 2004.
[79] H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd-InP Schottky diode,” Sens. Actuators B, vol. 92. pp. 6-16, 2003.
[80] 陳昱任, “ 鈀/氮化鎵蕭特基二極體氫氣感測器之至製備及其感測特性之研究,” 成功大學化學工程所碩士論文,2006.
[81] 邱柏順, “ 具有表面處理之三-氮族化合物半導體系列氫氣感測器之研製,” 成功大學微電子工程所碩士論文,2009.
[82] 吳忠燁, “ 無電鍍法製備鈀/氮化鋁鎵蕭特基二極體氫氣感測器之研究,” 成功大學化學工程所碩士論文,2008.
[83] 蔡宗翰, “ III-V族化合物半導體式氫氣感測器之研究,” 成功大學微電子工程所博士論文,2010.