| 研究生: |
蔣子涵 Chiang, Tzu-Han |
|---|---|
| 論文名稱: |
在馬赫-曾德爾濾波器中使用絕熱消跡耦合器的平坦通帶多工(解)復用器 Flat-Top WDM (De)Multiplexers based on Mach-Zehnder Interferometer with Adiabatic Elimination Couplers |
| 指導教授: |
曾碩彥
Tseng, Shuo-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 積體光學 、馬赫―曾德爾干涉儀 、光學濾波器 、晶格濾波器 、波長分區多路復用器 |
| 外文關鍵詞: | Integrated optics, Mach-Zehnder interferometer, optical filters, lattice filters, wavelength filtering devices |
| 相關次數: | 點閱:107 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文致力於研究波長分區多路復用濾波器(Wavelength-Division Multiplexing Filters),以樹枝狀結構串接多個不同階數的級聯馬赫―曾德爾干涉多路復用器(cascaded Mach-Zehnder Interferometer multiplexer ),以達到低損耗且具有平坦通帶的波長通道分區輸出。
根據所需的分波效果,可藉由設計級聯馬赫―曾德爾干涉多路復用器來達成,計算各階所需的耦合係數與延遲項組合,可以任意設計具有寬通帶與寬阻帶的分波器,且維持兩輸出波形具有半個自由光譜範圍(Free Spectral Range, FSR)位移量的特徵,相鄰的通帶從不同通道輸出。
此外,由於在各階濾波器結構中所使用的定向耦合器因耦合係數易受波長影響,離開中心波長的區域有較高的串擾雜訊(crosstalk),於是本論文中以絕熱消跡耦合器(Adiabatic Elimination Coupler)取代定向耦合器(Directional Coupler),利用其耦合係數對波長調變較穩定的特性,降低級聯濾波器輸出波形的串擾,進一步使得使用絕熱消跡耦合器的波長分區多路復用濾波器具有較強的分光能力,最後比較耦合器取代前後的優缺點。
We present a new device of 4-channel wavelength-division multiplexing (de)multiplexer, which is less sensitive to wavelength. The flat pass-bands are provided by cascaded Mach-Zehnder interferometers, and the 1-to-4 wavelength (de)multiplexer device is based on a binary tree of cascaded Mach-Zehnder lattice filters. And we use a special algorithm to calculate and design CMZ filters with directional couplers or adiabatic elimination couplers. We made a comparison between filter with directional couplers and filter with adiabatic elimination couplers, and the former one is more sensitive to wavelength while the crosstalk of the later one remains <~-10dB at all wavelength.
Reference
1. C. A. Brackett, “Dense wavelength division multiplexing networks: Principles and applications,” IEEE Journal on Selected Areas in Communications, 8(6), 948–964, (1990).
2. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” Journal of Lightwave Technology, 19(12), 1970–1975, (2001).
3. A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing using photonic crystals,” Applied Optics, 40(14), 2247–2252 (2001).
4. H. Xu, Y. Shi, “Flat-Top CWDM (De) Multiplexer Based on MZI With Bent Directional Couplers,” IEEE Photonics Technology Letters, 30(2), 169-172 (2018).
5. R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” Journal of Lightwave Technology, 16(9), 1546–1559 (1998).
6. F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Optics Express, 21(10), 11652-11658 (2013).
7. W. Shi et al., “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Optics Express, 21(6), 6733–6738 (2013).
8. J.M.H. Elmirghani, H.T. Mouftah., ‘’All-optical wavelength conversion: technologies and applications in DWDM networks’’, IEEE Communications Magazine, 38(3), 86-92 (2000).
9. P. Pan et al., “Compact 4-channel AWGs for CWDM and LAN WDM in data center monolithic applications,” Optics and Laser Technology, 75, 177–181 (2015).
10. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electronics Letters, 26(2), 87–88 (1990).
11. K.O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal of Lightwave Technology, 15(8), 1263-1276 (1997).
12. K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” Journal of Lightwave Technology, 13(7), 1243–1249 (1995).
13. C. K. Madsen and J. H. Zhao, “Optical Filter Design and Analysis: A Signal Processing Approach,” John Wiley & Sons, Inc. (1999).
14. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Optical Express, 15(22), 14765–14771 (2007).
15. H. Venghaus, “Wavelength Filters in Fibre Optics,” Springer-Verlag Berlin Heidelberg (2006).
16. A. Gray and J. Markel, “A normalized digital filter structure,” IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(3), 268-277 (1975).
17. K. A. Qubaisi, H. A. Shoman, M. S. Rasras, M. S. Dahlem, and A. Khilo, “Arbitrary frequency response filter synthesis using generalized cascaded Mach-Zehnder interferometer lattice filters,” Proceedings of the SPIE, 9891, 989125 (2016).
18. G. P. Riblet, “A directional coupler with very flat coupling,” IEEE Transactions on Microwave Theory and Techniques., 26(2), 70–74 (1978).
19. E Brion et al “Adiabatic elimination in a lambda system” Journal of Physics A: Mathematical and Theoretical, 40(5), 1033 (2007).
20. H. J. R. Dutton, Understanding optical communications: Prentice Hall PTR, Upper Saddle River, New Jersey 07458 (1998).