| 研究生: |
回寶珩 Hwei, Bao-Herng |
|---|---|
| 論文名稱: |
新式微型細胞計數器之設計、製作及應用 Design, Fabrication and Characterization of a Novel Micromachined Flow Cytometer |
| 指導教授: |
李國賓
Lee, Gwo-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 微機電系統 、生物晶片 、微型細胞計數器 、介電泳 、負介電泳力 、微電極陣列 、晶片型實驗室 |
| 外文關鍵詞: | microelectrode, lab-on-a-chip, biochip, micromachined flow cytometers, MEMS, cell manipulation, negative dielectrophoretic force, dielectrophoresis |
| 相關次數: | 點閱:181 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一新式微型細胞計數器,其可將微粒子或細胞聚焦於三維空間中以利計數和分析。利用整合光纖檢測機構之流體式細胞計數器於快速檢測生物分子中,已成為極重要的分析工具。但是微粒子於第三維z方向上,仍然具有一個自由度,因此微粒子可以在微管道之z方向自由分佈,因而造成該細胞計數器所偵測到之粒子信號強度無法均一。本研究中提出之創新晶片,係藉由兩側邊鞘流控制微粒子或細胞水平方向之聚焦,以及利用整合於晶片上之微電極陣列控制負介電泳力於垂直方向使其聚焦,可以精準地將細胞或微小粒子固定在微管道的中央。此晶片主要包含三個模組,分別為微流體細胞計數器之微管道、控制介電用力之微電極陣列以及光纖檢測機構。經由此新式設計,將不需利用螢光染色來做為微小粒子或細胞不同尺寸辨識,也無須精密的光學校準。此晶片經測試後,由測試結果實現本研究於微粒子或細胞三維聚焦之設計,大幅地改善了偵測效率。此晶片之設計、製作和測試勢必會使得整個醫學診斷工作流程帶來相當大的革新,也可以大幅度的提昇醫療的品質。
在晶片製作部分,本研究利用微細加工方式,在玻璃基材上製作微型流體微粒計數器之微流道,且於其上利用金屬蒸鍍及蝕刻的方式定義出電極陣列,並提出一方便、可靠且符合批次製造的光學偵測系統,利用以蝕刻完成之玻璃基材光纖嵌入晶片中作為光學波導管,簡化了傳統上填充不同折射係數液體作為光學波導管之複雜性。
This study reports a micro flow cytometer with an innovative 3-dimensional focusing function that can concentrate particles or cells at the center of sample stream, resulting in a high-precision cell counting. Focusing of the sample flow is a critical issue for micro flow cytometers while counting the particles or cells using integrated optical detection system such as buried optical waveguides. Appreciable errors could occur if the particles are randomly distributed vertically even though they have been focused horizontally. In this paper, a 3-D focusing micromachined flow cytometer is demonstrated using the combination of dielectrophoretic (DEP) and hydrodynamic forces. Two sheath flows focus the sample flow horizontally by hydrodynamic force and two embedded electrode plates focus the particles vertically utilizing dielectrophoretic force. Three major modules have been integrated on glass substrates to form the microfluidic device, including a hydrodynamically driven flow cytometer, embedded microelectrodes for dielectrophoretic forces and etched optical fibers for on-line cell detection. With this approach, cells with different sizes could be counted without fluorescence labeling and delicate optical alignment procedures are not required. Experimental data show that high-precision particle or cell counting could be achieved. The results of this study will make substantial impacts and contribution to miniaturization of a bio-analytical system.
A fast and reliable processes have been successfully developed in this study to fabricate microfluidic devices and microelectrodes using micro system technologies. The concept of integration of optical sensing mechanism in a microchip has also been realized an implemented. In this effort, it reduced the complexity of stuffing materials for waveguide function.
1. 零組件雜誌(Components Time), 129期, 2002年7月。
2. K. Seiler, D. J. Harrison, and A. Manz, “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems,” J. Chromato., Vol. 593. pp. 253-258. 1992.
3. A. Moldavan, “Photo-electric technique for the counting of microscopical cells,” 1934.
4. P.J. Crosland-Taylor, “A device for counting small particles suspended in a fluid through a tube,” Nature 171, pp. 37-38. 1953.
5. W. H. Coulter, “High speed automatic blood cell counter and cell size analyzer,” Proc. Natl. El. Conf. 12, pp. 1034-1040, 1956.
6. H. A. Crissman and J. A. Steinkamp, “Rapid simultaneous measurement of DNA, protein and cell volume in single cells from large mammalian cell populations,” J. Cell Biol., Vol. 59, pp. 766, 1973.
7. J. Krűger, K. Singh, A. O’Neill, C. Jackson, A. Morrison, and P. O’Brien, “Development of a microfluidic device for fluorescence activated cell sorting,” J. Micromech. Microeng. Vol. 12, pp. 486-494, 2002.
8. T. Horsburgh, S. Martin, and A. J. Robson, “The application of flow cytometry to histocompatibility testing,” Transplant Immunology, Vol. 8, pp. 3-15, 2000.
9. R. Miyake, H. Ohki, I. Yamazaki, and R. Yabe, “A development of micro sheath flow cytometer,“ Proc. 4th IEEE MEMS, pp.259-264, 1991.
10. G. B. Lee, C. H. Lin, and G. L. Chang, “Multi-cell-line micro flow cytometers with buried SU-8/SOG optical waveguides,” Proc. 15th IEEE MEMS, pp. 503-506, 2002.
11. L. Cui, T. Zhang, and H. Morgan,” Optical particle detection integrated in a dielectrophoretic lab-on-a-chip,” J. Micromech. Microeng. Vol. 12, pp. 7-12, 2002.
12. M Kanda, M Nakata, M Osoegawa, S Niwa, T Yamashita, S Suzuki, and K Murayama, “Flow cytometer using a fiber optic detection system,” Proc. SPIE, Vol. 4260, pp. 155-65, 2000.
13. S. Gawad, L. Schild, and Ph. Renaud, “Micormachined impedance spectroscopy flow cytometer for cell analysis and particle sizing,” J. Lab on a Chip, Vol. 1, pp. 76-82, 2001.
14. C. H. Lin and G. B. Lee, “Micromachined flow cytometers with embedded etched optic fibers for optical detection”, J. Micromech. Microeng. Vol. 13 , pp. 1–7, 2003.
15. G. B. Lee, C. I. Hung, B. J. Ke, G. R. Huang, B. H. Hwei, and H. F. Lai, “Hydrodynamic focusing for a micromachined flow cytometer”, ASME, J. Fluids Engineering, pp. 123- 672, 2000.
16. L. M. Fu, G. B. Lee, Y. H. Lin, and R. J. Yang ,”Manipulation of micro-particles using new modes of travelling-wave-dielectrophoretic forces-numerical simulation and experiments,” IEEE/ASME Transactions on Mechatronics, accepted, 2003.
17. J. Sanny and W. Moebs, “ University physics”, Wm. C. Brown Publisher, pp. 444-446, 1996.
18. X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J.Physics D : Applied Physics, Vol. 27, pp. 1571-1574, 1994.
19. R. J. Yang and L. M. Fu, “Thermal and flow analysis of a heated electronic component,” J. Heat and Mass Transfer, Vol. 44, pp. 2261-2275, 2001.
20. H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan and T. C. Tan, “Large-area travelling-wave dielectrophoresis particle separator,” J. Micromechanics and Microengineering, Vol. 7, pp. 65-70, 1997
21. C. H. Lin, G. B. Lin, Y. H. Lin, and G. L. Chang, “A fast prototyping process for fabrication of microfluidic systems on soda-lime glass,” J. Micromech. Microeng, Vol. 11, pp. 726-732, 2001.
22. http://www.ibmm.informatics.bangor.ac.uk
23. http://www.ibmm.informatics.bangor.ac.uk
24. C. H. Lin, L. M. Fu, B. H. Hwei, and G. B. Lee, “A novel micro flow cytometer with 3-dimensional focusing utilizing dielectrophoresis and hydrodynamic forces,” sumitted to J.MEMS, 2003.
25. http://www.hk-phy.org/iq/optical_fibre/optical_fibre.html
26. http://home.mc.ntu.edu.tw/~histol/Ffolder_html/blood.html