| 研究生: |
王冠閔 Wang, Guan-Min |
|---|---|
| 論文名稱: |
應用於毫米波 94-GHz CMOS 射頻前端收發機之 47-GHz CMOS 壓控振盪器及鎖相迴路晶片設計 Research on Millimeter-Wave 47-GHz CMOS Voltage Controlled Oscillator and Phase Locked Loop for 94-GHz CMOS RF Front-end Transceiver |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 94-GHz 、CMOS 、毫米波 、壓控振盪器 、鎖相迴路 |
| 外文關鍵詞: | CMOS, millimeter-wave, push-push frequency doubling, PLL, VCO |
| 相關次數: | 點閱:70 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研製應用於毫米波94-GHz CMOS射頻前端收發機之47-GHz CMOS壓控振盪器及鎖相迴路晶片,皆採用TSMC CMOS 90-nm GUTM製程設計實現。高輸出功率與寬可調頻寬之94-GHz CMOS雙推式壓控振盪器以雙推式的概念,利用電路本身的諧波訊號達成倍頻效果,並在共模點輸出二倍頻(94-GHz)之諧波訊號,如此便能在較為低頻、元件特性較好的條件下完成振盪核心設計,產生響應較好的高頻訊號。使用轉導值提升技巧之47-GHz CMOS壓控振盪器在電路設計上使用上下雙層纏繞的變壓器形式電感,設置於交互耦合對電晶體之汲極與閘極處,使其產生轉導值提升的效果,並以公式推導佐證,該技巧確實可改善轉導值不足的問題,減輕高頻電路之設計負擔。47-GHz CMOS毫米波鎖相迴路射頻晶片之電路架構包含47-GHz壓控振盪器、注入鎖定除頻器、電流邏輯模式除頻器、真實單相時脈除頻器、相位頻率偵測器、電荷幫浦以及迴路濾波器等部分,其中壓控振盪器利用轉導值提升技巧完成設計,注入鎖定除頻器則是利用forward-body-bias、dual-mixing及series picking等技術改善鎖定頻寬問題完成設計,其他子電路亦經過良好的設計,藉此得到比單一振盪器電路更為穩定精準之訊號輸出,減少系統整合運作時的誤差。電路設計使用Agilent ADS進行模擬,走線效應則使用Ansys 3-D全波電磁模擬軟體HFSS進行模擬。晶片採用fully on-wafer與wafer mounted on PCB的方式進行量測。
This thesis presents the design research on a 94-GHz millimeter-wave CMOS voltage controlled oscillator (VCO), 47-GHz VCO and phase locked loop (PLL) for a 94-GHz CMOS RF front-end transceiver. These chips are implemented by TSMC 90-nm CMOS process. In the 94-GHz VCO design, the push-push frequency doubling technique is adopted to overcome the process limitation and have better performance. In the 47-GHz VCO design, a gm-boost technique is adopted for better star-up condition at high frequency design. In the 47-GHz PLL, the gm-boost technique is adopted in VCO circuit. The forward body bias, dual-mixing, and series-peaking techniques are adopted in injection locked frequency divider for wider locking range. The other sub-circuits of PLL are also well designed. The simulated and measured results of the designed RFICs are compared and discussed in this thesis.
[1] H.-C. Kuo, H.-H. Wang, H.-L. Yue, Y.-W. Ou, C.-C. Lin, H.-R. Chuang, and T.-H. Huang, “A 60-GHz fully integrated CMOS sub-harmonic RF receiver with MM-wave on-chip AMC-antenna/balun-filter and on-wafer wireless transmission test,” in IEEE MTT-S Int. Microw. Symp. Dig., 2012, Montreal, Canada.
[2] RF Globalnet. [Online]. Available:
http://www.rfglobalnet.com/doc.mvc/Fixed-Wireless-Communications-at-60GHz-Unique-0001
[3] Ekaterina Laskin, Mehdi Khanpour, Sean T. Nicolson, Alexander Tomkins, Patrice Garcia, Andreia Cathelin, Member, Didier Belot, and Sorin P. Voinigescu, “Nanoscale CMOS transceiver design in the 90–170-GHz range,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3477–3490, Dec. 2009.
[4] S. T. Nicolcon, A. Tomkins, K. W. Tang, A. Cathelin, D. Belot, S. P. Voinigescu, “A 1.2 V, 140 GHz receiver with on-die antenna in 65 nm CMOS,” in IEEE RFIC Symp. Digest, pp.229-232, Jun.2008.
[5] S.S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. Schmidt, “Advanced microwave imaging,” IEEE Microwave Magazine, vol. 13, no. 6, pp. 26-43, Sep. 2012.
[6] Medical Devices Meet Consumer Electronics. [Online].Available:
http://www.asianhhm.com/technology-equipment/medical-devices-meet-consumer-electronics
[7] IEEE 802.15 Working Group for WPAN. [Online]. Available:
http://www.ieee802.org/15
[8] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition” IEEE J. Solid-State Circuit, vol. 48, no. 4, pp. 1055-1071, Apr. 2013.
[9] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681, Dec. 2010.
[10] A. Arbabian, B. Afshar, J.-C. Chien, S. Kang, S. Callender, E. Adabi, S. Toso, R. Pilard, D. Gloria, and A. Niknejad, “A 90 GHz-carrier 30 GHz-bandwidth hybrid switching transmitter with integrated antenna,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2010, pp. 420–421.
[11] A. Arbabian, S. Kang, S. Callender, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz pulsed-transmitter with near-field/far-field energy cancellation using a dual-loop antenna,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., 2011.
[12] L. Li, P. Reynaert, and M. Steyaert, “Design and analysis of a 90 nm mm-wave oscillator using inductive-division LC tank,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 1950–1958, Jul. 2009.
[13] C. Cao and K. K. O, “Millimeter-wave voltage-controlled oscillators in 0.13-um CMOS Technology,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1297-1304, Jun. 2006.
[14] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge, U.K.: Cambridge Univ. Press, 2004, p. 661–664.
[15] D. D. Kim, H. Wohlmuth, and W. Simburger, “A 70 GHz manufacturable complementary LC-VCO with 6.14 GHz tuning range in 65 nm SOI CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2007, pp. 540–541.
[16] Y. –S. Shiao, G. –W. Huang, C. –W. Chuang, H. –H. Hsieh, C.-P. Jou, and F. –L. Hsueh, “A 100-GHz varactorless CMOS VCO using source degeneration,” in IEEE MTT-S Int. Microw. Symp. Dig. Papers, Jun. 2012, pp. 1–3.
[17] S. Kang and A. Niknejad, “A 100GHz active-varactor VCO and a bi-directionally injection-locked loop in 65nm CMOS,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., 2013. pp. 231-234.
[18] P. –Y. Chiang, O. Momeni, and P. Heydari, “A 200-GHz inductively tuned VCO with -7dBm output power in 130-nm SiGe BiCMOS” IEEE Trans. Microw. Theory Tech., vol. 61, no. 10, pp. 3666-3673, Oct. 2013.
[19] F. X. Sinnesbichler, “Hybrid millimeter-wave push–push oscillators using silicon–germanium HBTs,” IEEE Microw. Wireless Compon. Lett., vol. 51, no. 2, pp. 422–430, Feb. 2003.
[20] 黃大容,應用於2.4/5.7-GHz 雙頻WLAN 射頻收發機之系統規劃及RF CMOS晶片研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十五年。
[21] 鄒育霖,Ka 頻段低相位雜訊雙推式振盪器之研製,國立中央大學電機工程研究所碩士論文,民國九十五年。
[22] T.H. Lee, A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp.326-336, Mar. 2000.
[23] Applicable power level by selected harmonic mixer. [Online]. Available: http://ena.support.keysight.com/e5052b/manuals/webhelp/eng/measurement_using_e5053a_and_external_mixer/making_phase_noise_measurement_above_26_5_ghz.htm
[24] S. Shahramian, A. Hart, A. Tomkins, A. C. Carusone, P. Garcia, P. Chevalier, and S. P. Voinigescu, “Design of a dual W- and D-band PLL, ” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1011-1022, May 2011.
[25] S. –W. Chu and C. –K. Wang, “An 80 GHz wide tuning range Push-Push VCO with gm-boosted full-wave rectification technique in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol.22, no.4, Apr. 2012, pp.203-205.
[26] L. Li, P. Reynaert, and M. Steyaert, “A 60-GHz CMOS VCO using capacitance- splitting and gate-drain impedance-balancing techniques,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 406-413, Feb. 2011.
[27] T. N. Nguyen and J. -W. Lee, “Ultralow-power Ku-band dual-feedback Armstrong VCO with a wide tuning range” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 7, pp. 394-398, Jul. 2012.
[28] Y. -H. Chuang, S. -L. Jang, S. -H. Lee, R. -H. Yen, and J. -J. Jhao, “5-GHz low power current-reused balanced CMOS differential Armstrong VCOs” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 139-141, Feb. 2007.
[29] H. -Y Chang and Y. -T Chiu, “K-band CMOS differential and quadrature voltage-controlled oscillators for low phase-noise and low-power applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 46-59, Jan. 2012.
[30] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, Sep. 2000.
[31] K. -C. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652–660, Mar. 2005.
[32] J. Rogers and C. Plett, Radio Frequency Integrated Circuit Design. Norwood, MA: Artech House, 2003.
[33] H. -H Hsieh and L. -H Lu, “A 40-GHz low-noise amplifier with a positive-feedback network in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1895-1902, Aug. 2009.
[34] D. A Chan and M. Feng, “A compact W-band CMOS power amplifier with gain boosting and short-circuited stub” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 2, pp. 98-100, Feb. 2011.
[35] C. -C Lee, S. -Y Huang and H. -Y Chang “A 44-49 GHz Low Phase Noise CMOS Voltage-Controlled Oscillator with 10-dBm Output Power and 16.1 % Efficiency” in IEEE Int. Microw. Symp. Dig. Papers, Jun. 2014, pp. 1-4.
[36] N. Nouri and J. F. Buckwalter, “A 45-GHz rotary-wave voltage- controlled oscillator” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 383-392, Feb. 2011.
[37] V. P. Trivedi and K. –H To, “A novel mm wave CMOS VCO with an AC-coupled LC tank,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., 2012. pp. 515-518.
[38] Y. Chao, H. C. Luong, and Z. Hong, “Analysis and design of a 14.1-mW 50/100-GHz transformer-based PLL with embedded phase shifter in 65-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 4, pp. 1193-1201, Apr. 2015.
[39] B. Razavi, Design of Analog CMOS Integrated Circuit, McGraw-Hill, 2001
[40] B. Razavi, RF Microelectronics Second Edition, Prentice-Hall, 2011
[41] K. Shu and Edgar Sánchez-Sinencio, CMOS PLL Synthesizers: Analysis and Design, Springer 2005.
[42] Jitter in PLL-based systems: cause, effect, and solution Cypress Semiconductor Corp, May 1995.
[43] H. Johnson and M. Graham, High Speed Digital Design: A Handbook of Black Magic, 1993 Prentice-Hall, Inc.
[44] Y. -T Chen, M. -W. Li, T. -H. Huang, and H. -R. Chuang, “A V-band CMOS direct injection-locked frequency divider using forward body bias technology,” IEEE Microw. Wireless Compon. Lett., vol. 2, no. 7, pp. 396-368, Jul. 2010.
[45] B. Razavi, “A study of injection locking and pulling in oscillator,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415–1424, Sep. 2004.
[46] 陳臆聰,24-GHz CMOS壓控振盪器與24-及60-GHz除頻器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十八年。
[47] C. -Y. Wu and C. -Y. Yu, “Design and analysis of a millimeter-wave direct injection-locked frequency divider with large frequency locking range,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1649-1658, Aug. 2007.
[48] F. –E. Liu, Z. –G. Wang, Z. –Q. Li, Q. Li, L. Tang, G. –L. Yang, and Z. Li, “A Ka-band wide locking range frequency divider with high injection sensitivity” J. Semicond., vol. 35, no. 3, Mar. 2014.
[49] T. –N. Luo, S. –Y. Bai, and Y. –J. Chen, “A 60-GHz 0.13um CMOS divide by three frequency divider” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2409-2415, Nov. 2008.
[50] C. -C. Chen, H. -W. Tsao, and H. Wang, “Design and analysis of CMOS frequency dividers with wide input locking ranges,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3060-3069, Dec. 2009.
[51] J. C. Chien and L. H. Lu, “40 GHz wide-locking-range regenerative frequency divider and low-phase-noise balanced VCO in 0.18 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 544-621.
[52] 林金龍,應用於多標準/多模態可重組式共存系統之低功率高效能鎖相迴路,國立成功大學電機工程學系碩士論文,民國一百年。
[53] J. Lee and H. Wang, “Study of subharmonically injection-locked PLLs,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539–1553, May 2009.
[54] B. Pontikakis, A Novel Double Edge-Triggered Pulse-Clocked TSPC D Flip-Flop for High-Performance and Low-Power VLSI Design Applications, Thesis in the Department of Electrical and Computer Engineering at Concordia University Montreal, Quebec, Canada, Aug. 2003.
[55] Designing Sequential Logic Circuit [Online].Available:
http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f01/Notes/chapter7.pdf
[56] C. -Y. Wu and C. -Y. Yu, “A phase-locked loop with injection-locked frequency multiplier in 0.18-um CMOS for V -band applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1629-1636, Jul. 2009.
[57] X. He, Low phase noise CMOS PLL frequency synthesizer design and analysis, dissertation of University of Maryland, 2007
[58] C. S. Vaucher “An adaptive PLL tuning system architecture combining high spectral purity and fast settling time,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 490–502, Apr. 2000.
[59] Prof. S. Long, Lecture Notes, Dept. of ECE, UCSB.[Online].
Available:http://www.ece.ucsb.edu/~long/
[60] X. Gao, E. A. M. Klumperink, M. Bohsali, and B. Nauta, “A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N2,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3253–3263, Dec. 2009.
[61] H.-K. Chen, T. Wang, and S.-S. Lu, “A millimeter-wave CMOS triple band phase-locked loop with a multimode -based ILFD,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1327–1338, May 2011.
[62] C. Feng, X. -P. Yu, W. -M. Lim, and K.-S. Yeo, “A 40 GHz 65 nm CMOS phase-locked loop with optimized shunt-peaked buffer,” IEEE Micro. Wireless Compon. Lett., vol. 25, no. 1, pp. 34-36, Jan. 2015.
[63] Y. Chao, H. C. Luong, and Z. Hong, “Analysis and design of a 14.1-mW 50/100-GHz transformer-based PLL with embedded phase shifter in 65-nm CMOS” IEEE Trans. Microw. Theory Tech., vol. 63, no. 4, pp. 1193–1201, Apr. 2015.