簡易檢索 / 詳目顯示

研究生: 張瑋文
Chang, Wei-Wen
論文名稱: 利用有機互補式反相器應用於細菌的高靈敏度檢測
High-sensitive detection of bacteria by using organic inverters
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 111
中文關鍵詞: PI軟性基板低電壓五環素十三烷基駢苯衍生物有機互補式金屬氧化半導細菌感測器
外文關鍵詞: PI flexible substrate, low voltage, pentacene, PTCDI-C13, organic complementary metal-oxide-semiconductor, bacteria, biosensor
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用五環素(Pentacene)和十三烷基駢苯衍生物(N,N’-ditridecylperylene-3,4,9,10-tetracarboxylic diimide , PTCDI-C13)組合成低電壓操作之有機互補式金屬氧化半導體(Organic Complementary Metal-Oxide-Semiconductor, O-CMOS)做為細菌感測器。
    在相同細菌種類下,由高濃度至低濃度,滴至O-CMOS中PTCDI-C13薄膜電晶體的通道上,可以發現O-CMOS元件之轉換電壓偏移量會隨著細菌濃度下降而漸漸變小。特別的是,當細菌濃度降至101 CFU/ml數量級時,元件仍然可以偵測出細菌的存在,由此可知,元件靈敏度極高。此外,O-CMOS轉換電壓之偏移量和細菌濃度可以得到一線性關係。由此線性關係,可以推估未知濃度的細菌溶液達到可定量分析之元件。
    由於細菌體積太大以致於無法滲入至絕緣層與主動層之間。然而,細菌的代謝物是由deoxyribonucleic acid (DNA)組成,細菌和細菌代謝物皆可使PTCDI-C13薄膜累積負電荷。此外,細菌表面會附著DNA分子,且分子大小足以滲入至絕緣層和主動層之間,使整體電荷密度提高,讓PTCDI-C13薄膜電晶體電性劇烈提升。故本研究結果提出一個獨特的概念,細菌代謝物中的DNA是影響PTCDI-C13薄膜電晶體元件電性的主要原因。

    In this study, two organic semiconductors, pentacene and N, N’-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13), were used to fabricate an organic complementary metal-oxide-semiconductor (O-CMOS) device on a polyimide (PI) flexible substrate to act as a bacteria sensor.
    Different bacterial solutions of various concentrations were placed dropwise on the PTCDI-C13-based transistor in O-CMOS devices. We observed that the switching voltage offset of the O-CMOS device gradually decreased with decreasing concentrations of the bacterial solutions. When the bacterial concentration was lowered to the order of 101 CFU/ml, the device still showed electrical responses, indicating that it was extremely sensitive to bacteria detection. In addition, the switching voltage offsets and the bacterial concentrations show a linear relationship. Based on this linear relationship, the O-CMOS can be used to quantitatively analyze and evaluate a bacterial solution with unknown concentration.
    The bacteria are too large to penetrate through the semiconductor layer to the insulating layer. However, bacterial metabolites are composed of deoxyribonucleic acid (DNA) that possesses negative charges and can attach to the surface of the bacteria. Placing the bacteria and their metabolites on the surface of the PTCDI-C13 thin film lead to the accumulation of negatively charged DNA on the surface of the film. The DNA molecules are small enough to penetrate into the interface between the insulating and active layers, thereby increasing the charge density in the conducting channel and improving electrical properties of the device. Consequently, the DNA in the bacterial metabolites can elicit electrical responses in the PTCDI-C13 thin film transistors in response to the presence of bacteria.

    中文摘要 I Extended Abstract III 誌謝 XII 目錄 XIII 表目錄 XVII 圖目錄 XIX 第一章 簡介 1 1.1 有機半導體簡介 1 1.2 細菌簡介 2 1.3 文獻回顧 3 1.4 研究動機與目的 5 第二章 有機薄膜電晶體概論 9 2.1有機半導體之傳輸機制 9 2.2有機薄膜電晶體的基本結構與操作原理 9 2.2.1有機薄膜電晶體基本結構 9 2.2.2有機薄膜電晶體之操作原理 10 2.2.3有機互補式反相器之操作原理 10 2.3 有機薄膜電晶體與互補式反相器的基本公式與特性 11 2.3.1 線性區、飽和區汲極電流和載子遷移率 12 2.3.2 臨界電壓 13 2.3.3 次臨界擺幅 13 2.3.4 電流開關比 13 2.3.5 互補式反相器之轉換電壓 14 2.3.6 互補式反相器之訊號增益 15 第三章 實驗方法與分析儀器介紹 25 3.1實驗材料 25 3.1.1元件基板 25 3.1.2有機高分子介電修飾層 25 3.1.3有機半導體材料 26 3.1.4細菌檢體 27 3.2 有機薄膜電晶體製程 28 3.2.1 PI軟板之清潔及準備方法 28 3.3.2 蒸鍍閘極 28 3.3.3 高介電常數之金屬氧化層 28 3.3.4 旋轉塗佈有機高分子之介電修飾層 29 3.3.5 蒸鍍有機半導體層 30 3.3.6 蒸鍍複合電極 30 3.3細菌和細菌代謝物檢體之製備方法 31 3.4分析儀器介紹 32 3.4.1半導體分析儀 32 3.4.2電容分析儀 33 3.4.3原子力顯微鏡 33 3.4.4靜電力顯微鏡 34 3.4.5掃描式開爾文探針顯微鏡 34 3.4.6拉曼光譜儀 34 3.4.7低掠角X光繞射分析儀 35 3.4.8吸收光譜(UV-vis spectroscopy) 35 第四章 實驗結果與討論 43 4.1前言 43 4.2 PTCDI-C13薄膜電晶體和有機互補式反相器於不同細菌下之電性量測與分析 43 4.2.1元件於不同介電修飾層和細菌種類下之電性量測與分析 44 4.2.2元件於不同細菌代謝物下之電性量測與分析 46 4.2.3元件於不同細菌代謝物成分下之電性量測與分析 47 4.2.4元件於不同細菌種類下之電容量測與分析 48 4.2.5元件於不同細菌濃度下之電性量測與分析 48 4.3 PTCDI-C13薄膜於不同細菌之物理特性分析 51 4.3.1薄膜於不同細菌種類下之原子力顯微鏡分析 52 4.3.2薄膜於不同細菌種類下之掃描式開爾文探針顯微鏡分析 52 4.3.3薄膜於不同細菌種類下之靜電力顯微鏡分析 53 4.3.4薄膜於不同細菌種類下之低掠角X光繞射分析 54 4.3.5薄膜於不同細菌種類下之拉曼光譜分析 55 4.3.6薄膜於不同細菌種類下之吸收光譜分析 56 第五章 結論 105 5.1 研究結論 105 5.2 未來工作 106 參考文獻 108

    [1]S. Sandrez, S. Meunier, Della-Gatta, T. Maindron, Impact of pixel surface topography onto thin-film encapsulated top-emitting organic light-emitting diodes performance, Thin Solid Films, 699, 137869, 2020.

    [2]S.S Rawat, A. Kumar, R. Srivastava, C. K. Suman, Efficiency enhancement in organic solar cells by use of Cobalt Phthalocyanine (CoPc) thin films, J. Nanosci. Nanotechnol., 20, 3703, 2020.

    [3]O. Marinov, M. J. Deen, J. A. Jimenez-Tejada, C. H. Chen, Variable-range hopping charge transport in organic thin-film transistors, Phys. Rep.-Rev. Sec. Phys. Lett., 844, 1, 2020.

    [4]I.H. Bae, H. Kim, G. Horowitz, S.D. Lee, Charge carrier injection and transport associated with thermally generated cracksin a 6, 13-bis(triisopropylsilylethynyl) pentacene thin-film transistor, Solid-State Electron, 63, 163, 2011.

    [5]S. Khound, R. Sarma, Low-voltage organic thin film transistors (OTFTs) using crosslinked polyvinyl alcohol (PVA)/neodymium oxide (Nd2O3) bilayer gate dielectrics, Appl. Phys. A-Mater. Sci. Process, 124, 41, 2018.

    [6]Y. Park, S. Park, I. Jo, B. H. Hong, Y. Hong, Controlled growth of a graphene charge-floating gate for organic non-volatile memory transistors, Org . Electron, 27, 227, 2015.

    [7]J. B. Ko, S. C. Lim, S. H. Kim, Optical properties of organic thin film transistors, J. Korean Phys. Soc. , 75, 236, 2019.

    [8]B. Y. Shao, S. J. Han, S. H. Hou, H. J. Zeng, X. G. Yu , J. S. Yu, Effect of hydroxyl group in polymeric dielectric layer on the performance of organic thin-film transistors and their application for NO2 gas sensor, J. Mater. Sci.-Mater. Electron, 30, 20638, 2019.

    [9]J. Jeong, M. Essafi, C. Lee, M. Haoues, M. F. Diouani, H. Kim, Y. Kim, Ultrasensitive detection of hazardous reactive oxygen species using flexible organic transistors with polyphenol-embedded conjugated polymer sensing layers, J. Hazard. Mater. , 355, 17, 2018.

    [10]M. H. Park, D. Hang, R. Chand, D. H. Lee, Y. S. Kim, Mechanism of label-free DNA detection using the floating electrode on Pentacene thin film transistor, J. Phys. Chem. C, 120, 4854, 2016.

    [11]N. X. Wang, A. N. Yang, Y. Fu, Y. Z. Li, F. Yan, Functionalized organic thin film transistors for biosensing, Accounts Chem. Res. , 52, 277, 2019.

    [12]S. Kim, T. Lim, K. Sim, H. Kim, Y. Choi, K. Park, S. Pyo, Light sensing in a photoresponsive, organic-based complementary inverter, ACS Appl. Mater. Interfaces, 3, 1451, 2011.

    [13]P. Lin, F. Yan, J. Yu, H. L. Chan, M. Yang, The application of organic electrochemical transistors in cell-based biosensors, Adv. Mater. ,22, 3655, 2010.

    [14]P. Lin, X. Luo, I. M. Hsing, F. Yan, Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing, Adv. Mater. , 23, 4035, 2011.

    [15]H. Tolouietabar, A. A. Hatamnia, R. Sahraei, E. Soheyli, Biologically green synthesis of high-quality silver nanoparticles using scrophularia striata boiss plant extract and verifying their antibacterial activities, J. nanostruct. , 10, 44, 2020.

    [16]R. X. He, M. Zhang, F. Tan, P. H. M. Leung, X. Z. Zhao, H. L. W. Chan, M. Yang, F. Yan, Detection of bacteria with organic electrochemical transistors, J. Mater. Chem. , 22, 22072, 2012.

    [17]Dey, A. Singh, D. Dutta, S. S. Ghosh, P. K. Iyer, Rapid and label-free bacteria detection using a hybrid tri-layer dielectric integrated n-type organic field effect transistor, J. Mater. Chem. A, 7, 18330, 2019.

    [18]M.Pope, P. Magnante, H. P. Kallmann, Electroluminescence in organic crystals, J. chem. phys. , 38, 2042, 1963.

    [19]H. Koezuka, A. Tsumra, T. Ando, Field-effect transistor with polythiophene thin-film, Synthetic Metals, 18, 699, 1987.

    [20]J. Rivnay, S. Inal, A. Salleo, R. M. Owens, M. Berggren, G. G. Malliaras, Organic electrochemical transistors, Nat. Rev. Mater. , 3, 17086, 2018.

    [21]G. Tarabella, F. M. Mohammadi, N. Coppede, F. Barbero, S. Iannotta, C. Santato, F. Cicoira, New opportunities for organic electronics and bioelectronics: ions in action, Chem. Sci. , 4, 1395, 2013.

    [22]S. P. White, K. D. Dorfman, C. D. Frisbie, Label-free DNA sensing platform with low-voltage electrolyte-gated transistors, Anal. Chem. , 87, 1861, 2015.

    [23]Q. J. Sun, J. Peng, W. H. Chen, X. J. She, J. Liu, X. Gao, W. L. Ma, S. D. Wang, Low-power organic field-effect transistors and complementary inverter based on low-temperature processed Al2O3 dielectric, Organic Electronics, 34, 118, 2016.

    [24]G. Lanzani, Organic electronics meets biology, Nat. Mater. , 13, 775, 2014.

    [25]C. Liao, F. Yan, Organic semiconductors in organic thin-film transistor-based chemical and biological sensors, Polym. Rev. , 53, 352, 2013.

    [26]J. Rivnay, R. M. Owens, G. G. Malliaras, The rise of organic bioelectronics, Chem. Mater. , 26, 679, 2014.

    [27]L. J. Liang, Y. B. Fu, L. F. Li, H. Zheng, X. F. Wei, Y. Wei, N. Kobayashi, RNA-CTMA dielectrics in organic field effect transistor memory, Appl. Sci.-Basel, 8, 887, 2018.

    [28]L.J. Liang, X. Y. Liu, M. Kanehara, N. Kobayashi, T. Minari, Layer-by-layer printing non-volatile organic thin-film transistor memory with a planarly-oriented DNA-complex dielectric, Org. Electron. , 55, 75, 2018.

    [29]T. Yukimoto, S. Uemura, T. Kamata, K. Nakamura, N. Kobayashi, Non-volatile transistor memory fabricated using DNA and eliminating influence of mobile ions on electric properties, J. Mater. Chem. , 21, 15575, 2011.

    無法下載圖示 校內:2025-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE