簡易檢索 / 詳目顯示

研究生: 張茹茵
Chang, Ju-Ying
論文名稱: 設計發展機器手臂輔助神經復健系統於中風後上肢復健評估與治療
Robot-Aided Design for Neurorehabilitation on Strokes: Assessment and Therapy of Upper Extremity
指導教授: 鍾高基
Chung, Kao-Chi
學位類別: 博士
Doctor
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 125
中文關鍵詞: 中風上肢科技輔具機器手臂輔助系統
外文關鍵詞: stroke, assistive technology, robot-aided system, upper limb
相關次數: 點閱:114下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦中風為腦部血管局部性的阻塞或出血造成病人死亡或言語、行動、身體機能與日常功能障礙,為全球與台灣常見且重要的疾病。中風病患常需長期接受復健訓練、重新學習使用患側上、下肢進行功能性動作,然而中風後上肢的功能性回復遠低於下肢,嚴重影響日常生活功能執行。由於大腦具可塑性,使中風患者仍具感覺動作功能恢復的潛能,積極配合適當的動作治療可增強動作學習效果。臨床上治療師以一對一方式執行中風後評估與訓練,屬於勞力集中方式且缺乏客觀量化評估動作控制表現。本研究目的為整合臨床復健醫學、生物力學、動作控制與動作學習之理論基礎,配合機電整合科技以設計發展機器手臂輔助復健訓練系統以提供中風病人單側上肢動作特性量化評估與復健訓練,特定目標包括:(1)利用上肢末端點運動學及動力學變化分析探討正常受試者與中風患者被動或主動動作特性、(2)利用外加干擾以估算上肢末端點生物力學特性、(3)設計機器手臂輔助訓練計畫並評估其適用性與訓練效果。
    本研究第一階段為設計發展機器手臂輔助復健系統,其設計考量包含:提供使用者不同路徑之單側上肢平面動作,提供復健人員方便監控、資料擷取之GUI操作介面,並以螢幕顯示器提供使用者動作表現相關視覺資訊迴授。系統功能性設計含括主動模式、被動模式與評估模式。本機器手臂系統採用平行五連機構提供二維動作、兩組伺服馬達驅動平行五連桿、兩組電磁離合器配合扭力計與迴授電路控制扭矩輸出大小、力感測器擷取上肢末端點作用力、編碼器量測各連桿轉動角度、含肘支撐架之工作平台、螢幕顯示器、工業電腦、人機操作介面。運動學/動力學方程式與系統控制架構以Borland C++ Builder軟體進行並透過訊號傳輸介面控制訊號以完成所需之功能執行。系統校正包括力感測器、伺服馬達及電磁離合器配合扭力計與迴授電路控制、連桿末端點執行軌跡及軌跡速度。
    第二階段研究為臨床應用研究,包含以機器手臂輔助系統量化評估上肢主動、被動動作特徵與上肢末端點生物力學特性於正常人與中風患者間之差異,同時設計系統化之機器手臂輔助訓練計畫並評估其訓練效果。本研究共有十位正常受試者(控制組)與十位中風受試者(實驗組),中風患者臨床評估包含上肢肌肉張力(MAS)、布朗司壯級分(Brunnstrom Stage)及Fugl-Meyer上肢動作功能評估量表。兩組受試者分別以機器手臂系統進行上肢主動、被動動作與上肢末端點生物力學特性評估,其中實驗組內之三位受試者接受至少三個月之系統化之機器手臂輔助訓練並評估其訓練效果。本研究評估所得參數為臨床分級與評估量表得分與機器手臂輔助評估所計算之量化參數,包含於被動動作時為上肢系統張力特性(Force profile),於主動動作時為運動學特性(含軌跡、速度、加速度與Jerk cost),於評估模式時為末端點彈性與黏性矩陣及其特徵值與特徵向量;所得參數以Kruskal-Wallis Test 及 Mann-Whitney U Test 進行統計分析,並使用回歸分析於臨床參數與機器手臂輔助評估參數間之相關性。
    系統校正結果顯示本研究之機器手臂輔助復健訓練系統具有高度穩定性。於被動動作時,中風患者上肢異常肌肉張力與力學特性反映於末端點張力特性上;於主動動作時,中風患者上肢異常協同動作模式與痙攣亦反映於末端點運動學特性上,包含明顯分段之速度曲線與明顯增加之Jerk cost;於上肢末端點生物力學特徵評估上,結果也顯示中風患者末端點剛性與黏性皆明顯大於正常受試者,其異常之神經肌肉控制機制及已改變的生物力學特性可藉由上肢系統末端點之運動學/動力學加以評估量化。於機器手臂輔助動作訓練結果也顯示,使用本系統給予系統化之復健訓練計畫對增進中風病患上肢功能上具有正面的效益,並反映於臨床功能量表上。因此,機器手臂輔助復健訓練系統可提供客觀量化之上肢動作特性與上肢末端點生物力學特徵參數以輔助臨床評估,並提供可系統程式化且有效之上肢動作訓練模式於臨床復健上。未來期望將機器手臂輔助評估與復健訓練,擴充到空間軌跡動作以更接近日常功能性動作模式,並將其推廣應用於臨床上,藉由更多臨床研究進一步探討神經肌肉病變患者上肢不同動作特徵與生物力學特性等,提供更科學化、系統化之研究方法與成果貢獻於臨床復健醫學、基礎科學與生物力學等領域。

    Stroke, a sudden/focal neurological deficit from ischemic or hemorrhagic lesions in the brain, is the leading cause of long-term disabilities. Functional recovery of upper limb is usually limited and deteriorates activities of daily living. In clinics, post-stroke rehabilitation is labor-intensive and limited to subjective assessment. The advent of mechatronic technology, movement sciences, biomechanics, motor control and motor learning theories provides new medical technologies and becomes potentially useful in the clinical rehabilitation. The purpose of this research is to design and develop a robot-aided rehabilitation system for quantitative evaluation and movement training for the hemiplegic upper limb. The research is aimed to (1) design/develop robot-aided system for objective evaluation and novel therapeutic process; (2) investigate active/passive movement characteristics through kinematic and kinetic measures for the able-bodied and the post-stroke; (3) characterize upper-limb endpoint biomechanics through measuring changes in endpoint force in response to perturbations; (4) develop robot-aided therapeutic programs for clinical applications and evaluate the efficacy of robot-aided training on upper-limb motor performance.
    This research is divided into two stages of experiments. Phase I is focused on design and development of a robot-aided rehabilitation system. The conceptual design for the robot-aided training system is to include functions: 1) providing various active/passive planer movements for the end-effector to exercise upper limb; 2) providing various force field for training practice; 3) recording endpoint kinematics and kinetics; 4) providing assessment of endpoint biomechanics and 5) providing visual feedback during task executions. The system consists of a five-bar linkage manipulator for planer movement, a six-axes force sensor for forces recording, two servo motors to drive the manipulator, two sets of clutches with torque sensors and integrated circuit to control torque output, encoders to monitor the angles of eacj linkage. The GUI controlling panel, kinematic/kinetic equations, signal transmission and data acquisition are programmed by Borland C++ Builder. The force sensor, servo motors, clutches, and trajectory and trajectory velocity are calibrated.
    Phase II consists of robot-aided assessment and movement therapy. Robot-aided assessment is applied to characterize active/passive upper-limb movement through changes of endpoint kinematics/kinetics and for investigate endpoint biomechanical properties through perturbations for able-bodied and stroke subjects. Robot-aided movement therapy includes develop therapeutic programs and evaluate the efficacy of robot-aided training. Ten able-bodied subjects and ten post-stroke subjects were recruited in this study. Assessment of muscle tone, Brunnstrin stage and Fugl-Meyer motor scale are conducted for each stroke subject. Three stroke subjects were recruited in the robot-aided training programs. The movement parameters of robot-aided assessment primarily includes: the force profiles from passive movement, the kinematic measures (coordinates, velocity, acceleration and jerk) from active movement and the endpoint stiffness/viscosity matrix which can be characterized by eigenvalues and eigenvectors. Kruskal-Wallis test and Mann-Whitney U test were used for statistical analysis. The efficacy of robot-aided therapeutic protocols on motor performance is also investigated through clinical and the robot-aided assessment.
    The results of system calibration show that the robot-aided system is functional well. During passive movement, the post-stroke revealed abnormal force profiles for each trajectory. During active movement, the stroke subjects also produced larger kinematic error and less smooth movement, especially for the jerk cost and segmented velocity profile. During estimating endpoint biomechanics, significant increases in endpoint stiffness and endpoint viscosity are revealed by the stroke subjects. The results of these biomechanical characteristics of the post-stroke demonstrated impaired motor control and changed viscoelastic properties of upper-limb movement. Besides, positive training effects of robot-aided movement training were revealed by this research. The robot-aided assessment during active movement provided quantitative measures which are positively related to the movement recovery status and to the clinical scale. The robot-aided system can facilitate further investigations for improved understanding of fundamental biomechanics and movement science in the motor control of upper limb. It also can assist in the evaluation of new therapeutic modalities, and characterize the recovery process for clinical applications.

    CHAPTER 1 INTRODUCTION ........................................... 1 1.1 Stroke ....................................................... 2 1.1.1 Prevalence, Incidence and Impact ........................... 2 1.1.2 Clinical Aspects and Pathophysiology ....................... 5 1.1.2.1 Clinical Features ........................................ 5 1.1.2.2 Classifications .......................................... 7 1.1.2.3 Spasticity .............................................. 11 1.1.3 Post-Stroke Recovery and Rehabilitation .................... 15 1.1.3.1 Sequential Stages of Motor Recovery ...................... 15 1.1.3.2 Functional Recovery and Underlying Mechanisms ............ 17 1.1.3.3 Rehabilitation: Approaches and Theoretical Principles .... 18 1.2 Neuromuscular Control and Biomechanics of Upper Limb ......... 21 1.2.1 Neuromuscular Control of Upper Limb ........................ 21 1.2.1.1 Upper Limb Motor Control ................................. 21 1.2.1.2 Equilibrium-Point Hypothesis ............................. 23 1.2.2 Biomechanical Properties of Upper Limb ..................... 24 1.2.2.1 Viscoelastic Properties .................................. 25 1.2.2.2 Endpoint Biomechanics .................................... 27 1.2.3 Characteristics of Upper Limb Movement after Stroke ........ 33 1.3 Robot-Aided Technology for Neurorehabilitation ............... 35 1.3.1 Bimanual Rehabilitators..................................... 35 1.3.2 ARM Guide .................................................. 36 1.3.3 Mirror Image Movement Enhancer (MIME) ...................... 37 1.3.4 MIT-Manus .................................................. 39 1.4 Motivation and Objectives .................................... 40 1.4.1 Purpose and Specific Aims .................................. 40 1.4.2 Research Hypothesis ........................................ 41 1.4.3 Significances .............................................. 41 CHAPTER 2 MATERIALS and METHODS .................................. 42 2.1 Design and Development of Robot-Aided System ................. 43 2.1.1 Conceptual Design and Functional Requirements .............. 43 2.1.2 System Design and Specifications ...................................... 46 2.1.2.1 Design of Five-Bar Linkage Manipulator .............................. 47 2.1.2.2 Algorithms of Kinematics and Kinetics ............................... 49 2.1.2.3 Control Architecture ................................................ 52 2.1.2.4 Graphic User Interface .............................................. 54 2.1.3 System Calibration .................................................... 57 2.2 Investigate Biomechanics & Motor Control of Upper Limb Movement ......... 60 2.2.1 Subjects .............................................................. 60 2.2.2 Passive Movement Characterization ..................................... 64 2.2.2.1 Experimental Design and Procedures .................................. 64 2.2.2.2 Data Analysis and Statistics ........................................ 65 2.2.3 Active Movement Characterization ...................................... 67 2.2.3.1 Experimental Design and Procedures .................................. 67 2.2.3.2 Data Analysis and Statistics ........................................ 68 2.2.4 Investigations of Endpoint Biomechanics ............................... 70 2.2.4.1 Experimental Design and Procedures .................................. 70 2.2.4.2 Data Analysis and Statistics ........................................ 71 2.2.5 Development of Robot-Aided Training Programs .......................... 73 2.2.5.1 Design of Training Protocols and Experimental Procedures ............ 73 2.2.5.2 Data Analysis and Statistics ........................................ 75 CHAPTER 3 RESULTS and DISCUSSION ............................................ 76 3.1 System Performance ...................................................... 77 3.2 Passive Movement Characteristics ........................................ 85 3.3 Active Movement Characteristics ......................................... 94 3.4 Endpoint Biomechanics of Upper limb ..................................... 99 3.4.1 Endpoint Stiffness .................................................... 99 3.4.2 Endpoint Viscosity .................................................... 102 3.5 Training Effects of Robot-Aided System .................................. 105 CHAPTER 4 CONCLUSIONS and RECOMMENDATION .................................... 110 REFERENCES .................................................................. 112

    [1] WHO, "Global burden of stroke," 2008.
    [2] D. Lloyd-Jones, R. Adams, M. Carnethon, G. De Simone, T. B. Ferguson, K. Flegal, E. Ford, K. Furie, A. Go, K. Greenlund, N. Haase, S. Hailpern, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lackland, L. Lisabeth, A. Marelli, M. McDermott, J. Meigs, D. Mozaffarian, G. Nichol, C. O'Donnell, V. Roger, W. Rosamond, R. Sacco, P. Sorlie, R. Stafford, J. Steinberger, T. Thom, S. Wasserthiel-Smoller, N. Wong, J. Wylie-Rosett, and Y. Hong, "Heart disease and stroke statistics--2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee," Circulation, vol. 119, pp. 480-6, Jan 27 2009.
    [3] J. S. Jeng and T. C. Su, "Epidemiological studies of cerebrovascular diseases and carotid atherosclerosis in Taiwan," Acta Neurol Taiwan, vol. 16, pp. 190-202, Dec 2007.
    [4] T. H. Lee, W. C. Hsu, C. J. Chen, and S. T. Chen, "Etiologic study of young ischemic stroke in Taiwan," Stroke, vol. 33, pp. 1950-5, Aug 2002.
    [5] T. S. Olsen, "Arm and leg paresis as outcome predictors in stroke rehabilitation," Stroke, vol. 21, pp. 247-51, Feb 1990.
    [6] G. Kwakkel, B. J. Kollen, J. van der Grond, and A. J. Prevo, "Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke," Stroke, vol. 34, pp. 2181-6, Sep 2003.
    [7] D. T. Wade, R. Langton-Hewer, V. A. Wood, C. E. Skilbeck, and H. M. Ismail, "The hemiplegic arm after stroke: measurement and recovery," J Neurol Neurosurg Psychiatry, vol. 46, pp. 521-4, Jun 1983.
    [8] "The World Health Organization MONICA Project (monitoring trends and determinants in cardiovascular disease): a major international collaboration. WHO MONICA Project Principal Investigators," J Clin Epidemiol, vol. 41, pp. 105-14, 1988.
    [9] M. M. Brown, H. Markus, and S. Oppenheimer, Stroke medicine. London ; New York: Taylor & Francis, 2006.
    [10] C. J. Murray and A. D. Lopez, "Evidence-based health policy--lessons from the Global Burden of Disease Study," Science, vol. 274, pp. 740-3, Nov 1 1996.
    [11] C. D. Mathers, R. Sadana, J. A. Salomon, C. J. Murray, and A. D. Lopez, "Healthy life expectancy in 191 countries, 1999," Lancet, vol. 357, pp. 1685-91, May 26 2001.
    [12] "Heart Disease and Stroke Statistics-2008 Update," American Heart Association, 2008.
    [13] R. A. Grysiewicz, K. Thomas, and D. K. Pandey, "Epidemiology of ischemic and hemorrhagic stroke: incidence, prevalence, mortality, and risk factors," Neurol Clin, vol. 26, pp. 871-95, vii, Nov 2008.
    [14] T. N. Taylor, P. H. Davis, J. C. Torner, J. Holmes, J. W. Meyer, and M. F. Jacobson, "Lifetime cost of stroke in the United States," Stroke, vol. 27, pp. 1459-66, Sep 1996.
    [15] T. Truelsen, B. Piechowski-Jozwiak, R. Bonita, C. Mathers, J. Bogousslavsky, and G. Boysen, "Stroke incidence and prevalence in Europe: a review of available data," Eur J Neurol, vol. 13, pp. 581-98, Jun 2006.
    [16] M. Brainin, N. Bornstein, G. Boysen, and V. Demarin, "Acute neurological stroke care in Europe: results of the European Stroke Care Inventory," Eur J Neurol, vol. 7, pp. 5-10, Jan 2000.
    [17] Z. S. Huang, T. L. Chiang, and T. K. Lee, "Stroke prevalence in Taiwan. Findings from the 1994 National Health Interview Survey," Stroke, vol. 28, pp. 1579-84, Aug 1997.
    [18] H. I. Wang, T. L. Chen, R. S. Shiu, and H. Y. Chiou, "Stroke Epidemiology in Taiwan, 1996-2005 " in 136th American Pubic Health Association (APHA) Annual Meeting, San Diego, California, 2008.
    [19] M. P. Barnes and G. R. Johnson, Upper motor neurone syndrome and spasticity :clinical management and neurophysiology. New York: Cambridge University Press, 2008.
    [20] Post-Stroke Rehabilitation Guideline Panel. and United States. Agency for Health Care Policy and Research., Post-stroke rehabilitation. Rockville, Md.: U.S. Dept. of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research, 1995.
    [21] W. H. Barker and J. P. Mullooly, "Stroke in a defined elderly population, 1967-1985. A less lethal and disabling but no less common disease," Stroke, vol. 28, pp. 284-90, Feb 1997.
    [22] D. A. Umphred, Neurological rehabilitation, 3rd ed. St. Louis: Mosby, 1995.
    [23] D. Bourbonnais and S. Vanden Noven, "Weakness in patients with hemiparesis," Am J Occup Ther, vol. 43, pp. 313-9, May 1989.
    [24] V. Dietz, M. Trippel, and W. Berger, "Reflex activity and muscle tone during elbow movements in patients with spastic paresis," Ann Neurol, vol. 30, pp. 767-79, Dec 1991.
    [25] J. W. Lance, "The control of muscle tone, reflexes, and movement: Robert Wartenberg Lecture," Neurology, vol. 30, pp. 1303-13, Dec 1980.
    [26] P. W. Duncan and M. B. Badke, Stroke rehabilitation : the recovery of motor control. Chicago: Year Book Medical Publishers, 1987.
    [27] B. Bobath, "Observations on adult hemiplegia and suggestions for treatment," Physiotherapy, vol. 46, pp. 5-14, Jan 10 1960.
    [28] S. Brunnstrom, "Motor testing procedures in hemiplegia: based on sequential recovery stages," Phys Ther, vol. 46, pp. 357-75, Apr 1966.
    [29] P. Archambault, P. Pigeon, A. G. Feldman, and M. F. Levin, "Recruitment and sequencing of different degrees of freedom during pointing movements involving the trunk in healthy and hemiparetic subjects," Exp Brain Res, vol. 126, pp. 55-67, May 1999.
    [30] M. F. Levin, "Interjoint coordination during pointing movements is disrupted in spastic hemiparesis," Brain, vol. 119 ( Pt 1), pp. 281-93, Feb 1996.
    [31] P. E. Kaplan and L. J. Cerullo, Stroke rehabilitation. Boston: Butterworths, 1986.
    [32] E. K. Anderson, "Sensory impairments in hemiplegia," Arch Phys Med Rehabil, vol. 52, pp. 293-7, Jul 1971.
    [33] A. J. Ayres, "Perception of space of adult hemiplegic patients," Arch Phys Med Rehabil, vol. 43, pp. 552-5, Nov 1962.
    [34] G. Mulley, "Associated reactions in the hemiplegic arm," Scand J Rehabil Med, vol. 14, pp. 117-20, 1982.
    [35] K. A. Sawner, J. M. LaVigne, and S. Brunnstrom, Brunnstrom's movement therapy in hemiplegia : a neurophysiological approach, 2nd ed. Philadelphia: Lippincott, 1992.
    [36] J. Bamford, P. Sandercock, M. Dennis, J. Burn, and C. Warlow, "A prospective study of acute cerebrovascular disease in the community: the Oxfordshire Community Stroke Project--1981-86. 2. Incidence, case fatality rates and overall outcome at one year of cerebral infarction, primary intracerebral and subarachnoid haemorrhage," J Neurol Neurosurg Psychiatry, vol. 53, pp. 16-22, Jan 1990.
    [37] W. Rosamond, K. Flegal, K. Furie, A. Go, K. Greenlund, N. Haase, S. M. Hailpern, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lloyd-Jones, M. McDermott, J. Meigs, C. Moy, G. Nichol, C. O'Donnell, V. Roger, P. Sorlie, J. Steinberger, T. Thom, M. Wilson, and Y. Hong, "Heart disease and stroke statistics--2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee," Circulation, vol. 117, pp. e25-146, Jan 29 2008.
    [38] J. S. Jeng, T. K. Lee, Y. C. Chang, Z. S. Huang, S. K. Ng, R. C. Chen, and P. K. Yip, "Subtypes and case-fatality rates of stroke: a hospital-based stroke registry in Taiwan (SCAN-IV)," J Neurol Sci, vol. 156, pp. 220-6, Apr 1 1998.
    [39] P. K. Yip, J. S. Jeng, T. K. Lee, Y. C. Chang, Z. S. Huang, S. K. Ng, and R. C. Chen, "Subtypes of ischemic stroke. A hospital-based stroke registry in Taiwan (SCAN-IV)," Stroke, vol. 28, pp. 2507-12, Dec 1997.
    [40] H. P. Adams, Principles of cerebrovascular disease. New York: McGraw-Hill Medical Pub. Division, 2007.
    [41] H. P. Adams, Jr., B. H. Bendixen, L. J. Kappelle, J. Biller, B. B. Love, D. L. Gordon, and E. E. Marsh, 3rd, "Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment," Stroke, vol. 24, pp. 35-41, Jan 1993.
    [42] G. W. Petty, R. D. Brown, Jr., J. P. Whisnant, J. D. Sicks, W. M. O'Fallon, and D. O. Wiebers, "Ischemic stroke subtypes: a population-based study of incidence and risk factors," Stroke, vol. 30, pp. 2513-6, Dec 1999.
    [43] G. Gillen and A. Burkhardt, Stroke rehabilitation : a function-based approach. St. Louis, Mo.: Mosby, 2004.
    [44] A. E. Baird, "Anterior Circulation Stroke," 2008.
    [45] D. I. Slater and S. A. Curtin, "Middle Cerebral Artery Stroke," 2008.
    [46] M. D. Hill and A. M. Buchan, "Posterior Cerebral Artery Stroke," 2007.
    [47] T. Brandt, W. Steinke, A. Thie, M. S. Pessin, and L. R. Caplan, "Posterior cerebral artery territory infarcts: clinical features, infarct topography, causes and outcome. Multicenter results and a review of the literature," Cerebrovasc Dis, vol. 10, pp. 170-82, May-Jun 2000.
    [48] J. A. Burne, V. L. Carleton, and N. J. O'Dwyer, "The spasticity paradox: movement disorder or disorder of resting limbs?," J Neurol Neurosurg Psychiatry, vol. 76, pp. 47-54, Jan 2005.
    [49] A. D. Pandyan, M. Gregoric, M. P. Barnes, D. Wood, F. Van Wijck, J. Burridge, H. Hermens, and G. R. Johnson, "Spasticity: clinical perceptions, neurological realities and meaningful measurement," Disabil Rehabil, vol. 27, pp. 2-6, Jan 7-21 2005.
    [50] D. K. Sommerfeld, E. U. Eek, A. K. Svensson, L. W. Holmqvist, and M. H. von Arbin, "Spasticity after stroke: its occurrence and association with motor impairments and activity limitations," Stroke, vol. 35, pp. 134-9, Jan 2004.
    [51] G. Sheean, "The pathophysiology of spasticity," Eur J Neurol, vol. 9 Suppl 1, pp. 3-9; dicussion 53-61, May 2002.
    [52] J. B. Nielsen, C. Crone, and H. Hultborn, "The spinal pathophysiology of spasticity--from a basic science point of view," Acta Physiol (Oxf), vol. 189, pp. 171-80, Feb 2007.
    [53] B. Ashworth, "Preliminary Trial of Carisoprodol in Multiple Sclerosis," Practitioner, vol. 192, pp. 540-2, Apr 1964.
    [54] R. W. Bohannon and M. B. Smith, "Interrater reliability of a modified Ashworth scale of muscle spasticity," Phys Ther, vol. 67, pp. 206-7, Feb 1987.
    [55] D. L. Damiano, J. M. Quinlivan, B. F. Owen, P. Payne, K. C. Nelson, and M. F. Abel, "What does the Ashworth scale really measure and are instrumented measures more valid and precise?," Dev Med Child Neurol, vol. 44, pp. 112-8, Feb 2002.
    [56] F. Pisano, G. Miscio, C. Del Conte, D. Pianca, E. Candeloro, and R. Colombo, "Quantitative measures of spasticity in post-stroke patients," Clin Neurophysiol, vol. 111, pp. 1015-22, Jun 2000.
    [57] A. D. Pandyan, G. R. Johnson, C. I. Price, R. H. Curless, M. P. Barnes, and H. Rodgers, "A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity," Clin Rehabil, vol. 13, pp. 373-83, Oct 1999.
    [58] N. Sehgal and J. R. McGuire, "Beyond Ashworth. Electrophysiologic quantification of spasticity," Phys Med Rehabil Clin N Am, vol. 9, pp. 949-79, ix, Nov 1998.
    [59] K. Honaga, Y. Masakado, T. Oki, Y. Hirabara, T. Fujiwara, T. Ota, A. Kimura, and M. Liu, "Associated reaction and spasticity among patients with stroke," Am J Phys Med Rehabil, vol. 86, pp. 656-61, Aug 2007.
    [60] S. H. Kreisel, H. Bazner, and M. G. Hennerici, "Pathophysiology of stroke rehabilitation: temporal aspects of neuro-functional recovery," Cerebrovasc Dis, vol. 21, pp. 6-17, 2006.
    [61] G. Kwakkel, B. Kollen, and E. Lindeman, "Understanding the pattern of functional recovery after stroke: facts and theories," Restor Neurol Neurosci, vol. 22, pp. 281-99, 2004.
    [62] N. S. Ward, "Mechanisms underlying recovery of motor function after stroke," Postgrad Med J, vol. 81, pp. 510-4, Aug 2005.
    [63] B. Kopp, A. Kunkel, W. Muhlnickel, K. Villringer, E. Taub, and H. Flor, "Plasticity in the motor system related to therapy-induced improvement of movement after stroke," Neuroreport, vol. 10, pp. 807-10, Mar 17 1999.
    [64] S. H. Kreisel, M. G. Hennerici, and H. Bazner, "Pathophysiology of stroke rehabilitation: the natural course of clinical recovery, use-dependent plasticity and rehabilitative outcome," Cerebrovasc Dis, vol. 23, pp. 243-55, 2007.
    [65] G. Verheyden, A. Nieuwboer, L. De Wit, V. Thijs, J. Dobbelaere, H. Devos, D. Severijns, S. Vanbeveren, and W. De Weerdt, "Time course of trunk, arm, leg, and functional recovery after ischemic stroke," Neurorehabil Neural Repair, vol. 22, pp. 173-9, Mar-Apr 2008.
    [66] D. T. Wade, V. A. Wood, and R. L. Hewer, "Recovery after stroke--the first 3 months," J Neurol Neurosurg Psychiatry, vol. 48, pp. 7-13, Jan 1985.
    [67] C. J. Partridge, M. Johnston, and S. Edwards, "Recovery from physical disability after stroke: normal patterns as a basis for evaluation," Lancet, vol. 1, pp. 373-5, Feb 14 1987.
    [68] P. W. Duncan, L. B. Goldstein, R. D. Horner, P. B. Landsman, G. P. Samsa, and D. B. Matchar, "Similar motor recovery of upper and lower extremities after stroke," Stroke, vol. 25, pp. 1181-8, Jun 1994.
    [69] N. F. Horgan and A. M. Finn, "Motor recovery following stroke: a basis for evaluation," Disabil Rehabil, vol. 19, pp. 64-70, Feb 1997.
    [70] A. R. Fugl-Meyer, L. Jaasko, I. Leyman, S. Olsson, and S. Steglind, "The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance," Scand J Rehabil Med, vol. 7, pp. 13-31, 1975.
    [71] P. W. Duncan, L. B. Goldstein, D. Matchar, G. W. Divine, and J. Feussner, "Measurement of motor recovery after stroke. Outcome assessment and sample size requirements," Stroke, vol. 23, pp. 1084-9, Aug 1992.
    [72] H. T. Hendricks, J. van Limbeek, A. C. Geurts, and M. J. Zwarts, "Motor recovery after stroke: a systematic review of the literature," Arch Phys Med Rehabil, vol. 83, pp. 1629-37, Nov 2002.
    [73] C. Calautti and J. C. Baron, "Functional neuroimaging studies of motor recovery after stroke in adults: a review," Stroke, vol. 34, pp. 1553-66, Jun 2003.
    [74] P. Talelli, R. J. Greenwood, and J. C. Rothwell, "Arm function after stroke: Neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation," Clinical Neurophysiology, vol. 117, pp. 1641-1659, Aug 2006.
    [75] R. J. Nudo and G. W. Milliken, "Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys," J Neurophysiol, vol. 75, pp. 2144-9, May 1996.
    [76] Y. Liu and E. M. Rouiller, "Mechanisms of recovery of dexterity following unilateral lesion of the sensorimotor cortex in adult monkeys," Exp Brain Res, vol. 128, pp. 149-59, Sep 1999.
    [77] S. B. Frost, S. Barbay, K. M. Friel, E. J. Plautz, and R. J. Nudo, "Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery," J Neurophysiol, vol. 89, pp. 3205-14, Jun 2003.
    [78] E. A. Fridman, T. Hanakawa, M. Chung, F. Hummel, R. C. Leiguarda, and L. G. Cohen, "Reorganization of the human ipsilesional premotor cortex after stroke," Brain, vol. 127, pp. 747-58, Apr 2004.
    [79] J. H. Carr, Movement science : foundations for physical therapy in rehabilitation. Rockville, Md.: Aspen Publishers, 1987.
    [80] M. Inaba, E. Edberg, J. Montgomery, and M. K. Gillis, "Effectiveness of functional training, active exercise, and resistive exercise for patients with hemiplegia," Phys Ther, vol. 53, pp. 28-35, Jan 1973.
    [81] A. E. Kirsteins, R. M. Black-Schaffer, and R. L. Harvey, "Stroke rehabilitation. 3. Rehabilitation management," Arch Phys Med Rehabil, vol. 80, pp. S17-20, May 1999.
    [82] C. Patten, J. Lexell, and H. E. Brown, "Weakness and strength training in persons with poststroke hemiplegia: rationale, method, and efficacy," J Rehabil Res Dev, vol. 41, pp. 293-312, May 2004.
    [83] B. Bobath, Adult hemiplegia : evaluation and treatment, 2d ed. London: Heinemann Medical, 1978.
    [84] S. Brunnstrom, Movement therapy in hemiplegia: a neurophysiological approach, [1st ed. New York,: Medical Dept., 1970.
    [85] National Research Council (U.S.). Study Committee on the Potential for Rehabilitating Lands Surface Mined for Coal in the Western United States. and Ford Foundation. Energy Policy Project., Rehabilitation potential of western coal lands / a report to the Energy Policy Project of the Ford Foundation / by the Study Committee. Washington, D.C. National Academy of Sciences,, 1973.
    [86] M. Knott and D. E. Voss, Proprioceptive neuromuscular facilitation: patterns and techniques, 2d ed. New York,: Hoeber Medical Division, 1968.
    [87] D. E. Voss, M. K. Ionta, B. J. Myers, and M. Knott, Proprioceptive neuromuscular facilitation : patterns and techniques, 3rd ed. Philadelphia: Harper & Row, 1984.
    [88] H. M. Feys, W. J. De Weerdt, B. E. Selz, G. A. Cox Steck, R. Spichiger, L. E. Vereeck, K. D. Putman, and G. A. Van Hoydonck, "Effect of a therapeutic intervention for the hemiplegic upper limb in the acute phase after stroke: a single-blind, randomized, controlled multicenter trial," Stroke, vol. 29, pp. 785-92, Apr 1998.
    [89] R. E. Schleenbaker and A. G. Mainous, 3rd, "Electromyographic biofeedback for neuromuscular reeducation in the hemiplegic stroke patient: a meta-analysis," Arch Phys Med Rehabil, vol. 74, pp. 1301-4, Dec 1993.
    [90] E. Taub, J. E. Crago, L. D. Burgio, T. E. Groomes, E. W. Cook, 3rd, S. C. DeLuca, and N. E. Miller, "An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping," J Exp Anal Behav, vol. 61, pp. 281-93, Mar 1994.
    [91] J. Doyon and H. Benali, "Reorganization and plasticity in the adult brain during learning of motor skills," Curr Opin Neurobiol, vol. 15, pp. 161-7, Apr 2005.
    [92] A. Karni, G. Meyer, P. Jezzard, M. M. Adams, R. Turner, and L. G. Ungerleider, "Functional MRI evidence for adult motor cortex plasticity during motor skill learning," Nature, vol. 377, pp. 155-8, Sep 14 1995.
    [93] G. Nelles, W. Jentzen, M. Jueptner, S. Muller, and H. C. Diener, "Arm training induced brain plasticity in stroke studied with serial positron emission tomography," Neuroimage, vol. 13, pp. 1146-54, Jun 2001.
    [94] J. Liepert, F. Hamzei, and C. Weiller, "Lesion-induced and training-induced brain reorganization," Restor Neurol Neurosci, vol. 22, pp. 269-77, 2004.
    [95] J. M. Winters and P. E. Crago, Biomechanics and neural control of posture and movement. New York: Springer, 2000.
    [96] V. B. Brooks, The neural basis of motor control. New York: Oxford University Press, 1986.
    [97] P. S. Lum, C. G. Burgar, D. E. Kenney, and H. F. Van der Loos, "Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis," IEEE Trans Biomed Eng, vol. 46, pp. 652-62, Jun 1999.
    [98] E. Pennestri, R. Stefanelli, P. P. Valentini, and L. Vita, "Virtual musculo-skeletal model for the biomechanical analysis of the upper limb," J Biomech, vol. 40, pp. 1350-61, 2007.
    [99] B. Mijovic, M. B. Popovic, and D. B. Popovic, "Synergistic control of forearm based on accelerometer data and artificial neural networks," Braz J Med Biol Res, vol. 41, pp. 389-97, May 2008.
    [100] T. Flash and N. Hogan, "The coordination of arm movements: an experimentally confirmed mathematical model," J Neurosci, vol. 5, pp. 1688-703, Jul 1985.
    [101] P. Morasso, "Spatial control of arm movements," Exp Brain Res, vol. 42, pp. 223-7, 1981.
    [102] H. I. Krebs, N. Hogan, M. L. Aisen, and B. T. Volpe, "Robot-aided neurorehabilitation," Rehabilitation Engineering, IEEE Transactions on, vol. 6, pp. 75-87, 1998.
    [103] F. A. Mussa-Ivaldi, N. Hogan, and E. Bizzi, "Neural, mechanical, and geometric factors subserving arm posture in humans," J Neurosci, vol. 5, pp. 2732-43, Oct 1985.
    [104] R. Shadmehr, F. A. Mussa-Ivaldi, and E. Bizzi, "Postural force fields of the human arm and their role in generating multijoint movements," J Neurosci, vol. 13, pp. 45-62, Jan 1993.
    [105] A. P. Georgopoulos, "Spatial coding of visually guided arm movements in primate motor cortex," Can J Physiol Pharmacol, vol. 66, pp. 518-26, Apr 1988.
    [106] A. Riehle and J. Requin, "Neuronal correlates of the specification of movement direction and force in four cortical areas of the monkey," Behav Brain Res, vol. 70, pp. 1-13, Sep 1995.
    [107] G. M. Karst and Z. Hasan, "Initiation rules for planar, two-joint arm movements: agonist selection for movements throughout the work space," J Neurophysiol, vol. 66, pp. 1579-93, Nov 1991.
    [108] Z. Hasan and G. M. Karst, "Muscle activity for initiation of planar, two-joint arm movements in different directions," Exp Brain Res, vol. 76, pp. 651-5, 1989.
    [109] J. McIntyre and E. Bizzi, "Servo Hypotheses for the Biological Control of Movement," J Mot Behav, vol. 25, pp. 193-202, Sep 1993.
    [110] A. G. Feldman, "Once more on the equilibrium-point hypothesis (lambda model) for motor control," J Mot Behav, vol. 18, pp. 17-54, Mar 1986.
    [111] A. G. Feldman and M. L. Latash, "Testing hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesis," Exp Brain Res, vol. 161, pp. 91-103, Feb 2005.
    [112] A. G. Feldman and M. F. Levin, "The equilibrium-point hypothesis--past, present and future," Adv Exp Med Biol, vol. 629, pp. 699-726, 2009.
    [113] A. G. Feldman, D. J. Ostry, M. F. Levin, P. L. Gribble, and A. B. Mitnitski, "Recent tests of the equilibrium-point hypothesis (lambda model)," Motor Control, vol. 2, pp. 189-205, Jul 1998.
    [114] A. G. Feldman, "Origin and advances of the equilibrium-point hypothesis," Adv Exp Med Biol, vol. 629, pp. 637-43, 2009.
    [115] V. M. Zatsiorsky, Kinetics of human motion. Champaign, IL: Human Kinetics, 2002.
    [116] N. Hogan, "The mechanics of multi-joint posture and movement control," Biol Cybern, vol. 52, pp. 315-31, 1985.
    [117] M. L. Latash and G. L. Gottlieb, "An equilibrium-point model for fast, single-joint movement: II. Similarity of single-joint isometric and isotonic descending commands," J Mot Behav, vol. 23, pp. 179-91, Sep 1991.
    [118] M. F. Levin, Y. Lamarre, and A. G. Feldman, "Control variables and proprioceptive feedback in fast single-joint movement," Can J Physiol Pharmacol, vol. 73, pp. 316-30, Feb 1995.
    [119] B. C. Abbott and A. V. Hill, "The heat of shortening of muscle," J Physiol, vol. 109, pp. Proc, 7, Aug 1949.
    [120] Y. C. Fung, Biomechanics : mechanical properties of living tissues, 2nd ed. New York: Springer-Verlag, 1993.
    [121] J. A. Hoffer and S. Andreassen, "Regulation of soleus muscle stiffness in premammillary cats: intrinsic and reflex components," J Neurophysiol, vol. 45, pp. 267-85, Feb 1981.
    [122] S. C. Cannon and G. I. Zahalak, "The mechanical behavior of active human skeletal muscle in small oscillations," J Biomech, vol. 15, pp. 111-21, 1982.
    [123] F. Lacquaniti, F. Licata, and J. F. Soechting, "The mechanical behavior of the human forearm in response to transient perturbations," Biol Cybern, vol. 44, pp. 35-46, 1982.
    [124] T. E. Milner, "Dependence of elbow viscoelastic behavior on speed and loading in voluntary movements," Exp Brain Res, vol. 93, pp. 177-80, 1993.
    [125] A. M. Gordon, A. F. Huxley, and F. J. Julian, "The variation in isometric tension with sarcomere length in vertebrate muscle fibres," J Physiol, vol. 184, pp. 170-92, May 1966.
    [126] W. O. Fenn and B. S. Marsh, "Muscular force at different speeds of shortening," J Physiol, vol. 85, pp. 277-97, Nov 22 1935.
    [127] R. Shadmehr, "Control of Equilibrium Position and Stiffness Through Postural Modules," J Mot Behav, vol. 25, pp. 228-241, Sep 1993.
    [128] C. N. Maganaris, "Force-length characteristics of in vivo human skeletal muscle," Acta Physiologica Scandinavica, vol. 172, pp. 279-285, Aug 2001.
    [129] D. E. Rassier, B. R. MacIntosh, and W. Herzog, "Length dependence of active force production in skeletal muscle," Journal of Applied Physiology, vol. 86, pp. 1445-1457, May 1999.
    [130] G. C. Joyce, P. M. Rack, and D. R. Westbury, "The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements," J Physiol, vol. 204, pp. 461-74, Oct 1969.
    [131] D. C. Lin and W. Z. Rymer, "Mechanical properties of cat soleus muscle elicited by sequential ramp stretches: implications for control of muscle," J Neurophysiol, vol. 70, pp. 997-1008, Sep 1993.
    [132] R. F. Kirsch, D. Boskov, and W. Z. Rymer, "Muscle stiffness during transient and continuous movements of cat muscle: perturbation characteristics and physiological relevance," IEEE Trans Biomed Eng, vol. 41, pp. 758-70, Aug 1994.
    [133] G. C. Agarwal and G. L. Gottlieb, "Oscillation of the human ankle joint in response to applied sinusoidal torque on the foot," J Physiol, vol. 268, pp. 151-76, Jun 1977.
    [134] T. Sinkjaer and R. Hayashi, "Regulation of wrist stiffness by the stretch reflex," J Biomech, vol. 22, pp. 1133-40, 1989.
    [135] B. I. Prilutsky, "Coordination of two- and one-joint muscles: functional consequences and implications for motor control," Motor Control, vol. 4, pp. 1-44, Jan 2000.
    [136] C. C. Gielen, J. C. Houk, S. L. Marcus, and L. E. Miller, "Viscoelastic properties of the wrist motor servo in man," Ann Biomed Eng, vol. 12, pp. 599-620, 1984.
    [137] I. D. Loram and M. Lakie, "Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability," J Physiol, vol. 545, pp. 1041-53, Dec 15 2002.
    [138] T. Flash and F. Mussa-Ivaldi, "Human arm stiffness characteristics during the maintenance of posture," Exp Brain Res, vol. 82, pp. 315-26, 1990.
    [139] T. Tsuji, P. G. Morasso, K. Goto, and K. Ito, "Human hand impedance characteristics during maintained posture," Biol Cybern, vol. 72, pp. 475-85, 1995.
    [140] H. Gomi and R. Osu, "Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments," J Neurosci, vol. 18, pp. 8965-78, Nov 1 1998.
    [141] E. J. Perreault, R. F. Kirsch, and P. E. Crago, "Voluntary control of static endpoint stiffness during force regulation tasks," J Neurophysiol, vol. 87, pp. 2808-16, Jun 2002.
    [142] A. A. Frolov, R. A. Prokopenko, M. Dufosse, and F. B. Ouezdou, "Adjustment of the human arm viscoelastic properties to the direction of reaching," Biol Cybern, vol. 94, pp. 97-109, Feb 2006.
    [143] B. Rohrer, S. Fasoli, H. I. Krebs, R. Hughes, B. Volpe, W. R. Frontera, J. Stein, and N. Hogan, "Movement smoothness changes during stroke recovery," J Neurosci, vol. 22, pp. 8297-304, Sep 15 2002.
    [144] C. C. Tsao and M. M. Mirbagheri, "Upper limb impairments associated with spasticity in neurological disorders," J Neuroeng Rehabil, vol. 4, p. 45, 2007.
    [145] L. Dipietro, H. I. Krebs, S. E. Fasoli, B. T. Volpe, and N. Hogan, "Submovement changes characterize generalization of motor recovery after stroke," Cortex, vol. 45, pp. 318-24, Mar 2009.
    [146] R. F. Beer, J. P. Dewald, and W. Z. Rymer, "Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics," Exp Brain Res, vol. 131, pp. 305-19, Apr 2000.
    [147] H. I. Krebs, M. L. Aisen, B. T. Volpe, and N. Hogan, "Quantization of continuous arm movements in humans with brain injury," Proc Natl Acad Sci U S A, vol. 96, pp. 4645-9, Apr 13 1999.
    [148] B. Rohrer, S. Fasoli, H. I. Krebs, B. Volpe, W. R. Frontera, J. Stein, and N. Hogan, "Submovements grow larger, fewer, and more blended during stroke recovery," Motor Control, vol. 8, pp. 472-83, Oct 2004.
    [149] P. S. Lum, S. L. Lehman, and D. J. Reinkensmeyer, "An Adaptive Therapy Machine for Rehabilitating Bimanual Lifting in Hemiplegic Stroke Patients," in 16th Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society on Engineering Advances: New Opportunities for Biomedical Engineers, Baltimore, Md, 1994, pp. 476-477.
    [150] P. S. Lum, D. J. Reinkensmeyer, and S. L. Lehman, "Robotic assist devices for bimanual physical therapy: preliminary experiments," Rehabilitation Engineering, IEEE Transactions on, vol. 1, pp. 185-191, 1993.
    [151] P. S. Lum, D. J. Reinkensmeyer, S. L. Lehman, P. Y. Li, and L. W. Stark, "Feedforward stabilization in a bimanual unloading task," Exp Brain Res, vol. 89, pp. 172-80, 1992.
    [152] D. J. Reinkensmeyer, L. E. Kahn, M. Averbuch, A. McKenna-Cole, B. D. Schmit, and W. Z. Rymer, "Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide," J Rehabil Res Dev, vol. 37, pp. 653-62, Nov-Dec 2000.
    [153] D. J. Reinkensmeyer, B. D. Schmit, and W. Z. Rymer, "Mechatronic assessment of arm impairment after chronic brain injury," Technol Health Care, vol. 7, pp. 431-5, 1999.
    [154] P. S. Lum, C. G. Burgar, and P. C. Shor, "Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis," IEEE Trans Neural Syst Rehabil Eng, vol. 12, pp. 186-94, Jun 2004.
    [155] P. S. Lum, C. G. Burgar, M. Van der Loos, P. C. Shor, M. Majmundar, and R. Yap, "MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study," J Rehabil Res Dev, vol. 43, pp. 631-42, Aug-Sep 2006.
    [156] P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar, and M. Van der Loos, "Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke," Arch Phys Med Rehabil, vol. 83, pp. 952-9, Jul 2002.
    [157] S. Masiero, A. Celia, G. Rosati, and M. Armani, "Robotic-assisted rehabilitation of the upper limb after acute stroke," Archives of Physical Medicine and Rehabilitation, vol. 88, pp. 142-149, Feb 2007.
    [158] L. Masia, H. I. Krebs, P. Cappa, and N. Hogan, "Design and characterization of hand module for whole-arm rehabilitation following stroke," Ieee-Asme Transactions on Mechatronics, vol. 12, pp. 399-407, Aug 2007.
    [159] N. Hogan and H. I. Krebs, "Interactive robots for neuro-rehabilitation," Restorative Neurology and Neuroscience, vol. 22, pp. 349-358, 2004.
    [160] H. I. Krebs, N. Hogan, B. T. Volpe, M. L. Aisen, L. Edelstein, and C. Diels, "Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility," Technol Health Care, vol. 7, pp. 419-23, 1999.
    [161] B. T. Volpe, H. I. Krebs, N. Hogan, L. Edelsteinn, C. M. Diels, and M. L. Aisen, "Robot training enhanced motor outcome in patients with stroke maintained over 3 years," Neurology, vol. 53, pp. 1874-6, Nov 10 1999.
    [162] H. I. Krebs, M. Ferraro, S. P. Buerger, M. J. Newbery, A. Makiyama, M. Sandmann, D. Lynch, B. T. Volpe, and N. Hogan, "Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus," J Neuroeng Rehabil, vol. 1, p. 5, Oct 26 2004.
    [163] H. Asada and K. Youceftoumi, "ANALYSIS AND DESIGN OF A DIRECT-DRIVE ARM WITH A 5-BAR-LINK PARALLEL DRIVE MECHANISM," Journal of Dynamic Systems Measurement and Control-Transactions of the Asme, vol. 106, pp. 225-230, 1984.
    [164] D. J. Gladstone, C. J. Danells, and S. E. Black, "The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties," Neurorehabil Neural Repair, vol. 16, pp. 232-40, Sep 2002.

    下載圖示 校內:2010-07-15公開
    校外:2011-07-15公開
    QR CODE