| 研究生: |
林建志 Lin, Jian-Jr |
|---|---|
| 論文名稱: |
基於智慧型碰撞預警之多功能數位車用控制台 A Multi-function Digital Vehicle Console Based on Intelligent Collision Warning |
| 指導教授: |
楊中平
Young, Chung-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 碰撞時間 、行車事件記錄器 、多功能數位車用控制台 、碰撞預警系統 、嵌入式系統 |
| 外文關鍵詞: | collision warning system, multi-function digital vehicle console, time to collision (TTC), embedded system, motor vehicle event data recorder (MVEDR) |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由於各大汽車廠商積極投入和嵌入式系統的發展,使得車用型電腦成為市場上的主流。車用型電腦為駕駛與乘客提供各種個人化的應用服務。服務包含有GPS定位與導航、多媒體影音播放及行動網路,因此我們實作了一個包含通訊、多媒體、個人化等的多功能數位車用控制台。
一個性能優良的車用控制台下需要具備兩項功能,首先如何有效地預防行車碰撞的發生,其次精確地記錄行車資訊以利事故發生後的調查。而根據統計結果顯示車禍死亡已成為十大死因之ㄧ,其造成生命威脅及財產上的損失甚巨。在車禍事故發生的原因之中,前後車未保持安全的行車間距,佔了大部份的比例,約百分之二十五。因此,碰撞預警系統(collision warning system) 已經成為行車安全上相當重要的一部分,在行車可能發生碰撞的情況下,它可即時提醒駕駛者並督促駕駛者做適當處置,以減少與前(後)車發生碰撞的機會。再者車上配備一台行車事件記錄器(motor vehicle event data recorder),可紀錄下汽車行駛中的所有數據資料,假設不幸發生車禍事故,相關的行車紀錄能協助釐清肇事原因。
在本篇論文中,除了建置此多功能控制台外,主要探討的是如何實現一個具有即時性及高成效的智慧型碰撞預警系統,並將此系統建立在控制台上,如此提供了行車時預防碰撞的機制。在設計上採用預估碰撞時間(Time to Collision, TTC)的計算及推測方法,其運算方式是根據下列因素 - (1) 兩車相對距離、(2)兩車相對速度、(3) 兩車相對加速度、(4)人類反應時間、(5)系統執行時間、(6)後車之經度緯度 - 做為預警系統輸入變數來推測危險警告的程度,並以適當不同程度的聲響做為輸出,通知駕駛人及車內其他乘客。
Recently, because all car manufacturers launch into the embedded systems, automobile-used computers products become the mainstream to provide driver and passenger an individualized service such as GPS position and navigation, multimedia and Mobile Internet. Thus, we have implemented a multi-function digital vehicle console (MFDVC). It includes communication, multimedia and individualization etc.
An excellent multi-function digital vehicle console (MFDVC) requires two functions. One is how to effectively prevent traffic crashes; the other is to precisely record the driving data in order to assist in investigating after car accident happens. According to the statistics, dying in a car accident has ranked among the top ten leading causes of death. It not only causes a great damage to our property but also harms our lives. The highest ratio of causing traffic crash, say 25%, is related to the problem of keeping safe distance between two vehicles while driving. Therefore, a collision warning system (CWS) is necessary to be one of automobile equipments now. This is because it lets driver alert to any possibility of the frontal or rear-end impact collision, and promptly respond to this warning by taking appropriate precaution measure against traffic crash so that accident could be avoided. Moreover, equipping with motor vehicle event data record (MVEDR) in automobile is also required so that it is used to collect the necessary data in transit. It can help the traffic crash investigation to tell what was happened in case of car accident.
Besides, the main subject of this study is to explore how to achieve real-time high-performance intelligent collision warning system in MFDVC. It provides the precautionary mechanism against traffic crash in transit. In this proposed CWS we use time to collision (TTC) to calculate and conjecture the time, and the computational inference is based on the following factors (input variables) - (1) relative distance between two vehicles、(2) relative velocity between two vehicles、(3) relative acceleration between two vehicles、(4) human reaction time、(5) system processing time、(6) longitude and latitude from GPS - and the buzzer will output warning message according to different levels inferred from CWS so as to alert the driver and passengers inside an automobile.
[1] W. D. Jones, “Keeping cars from crashing”, IEEE Spectr., vol. 38, no. 9, pp. 40- 45, Sep. 2001.
[2] P.L. Zador, S.A. Krawchuk, and R.B, “Vocas.Final Report–Automotive Collision Avoidance (ACAS) Program”, Tech. Rep. DOT HS 809 080, NHTSA, U.S. DOT, August 2000.
[3] Ministry of Public Security of China (2006), MPS Notice of Road Traffic Safety Status of China in 2005, Available: www.mps.gov.cn.
[4] Ronald Miller, Qingfeng Huang, “An Adaptive Peer-to-Peer Collision Warning System”, IEEE 55th Vehicular Technology Conference, Vol. 1, pp. 317- 318, Spring 2002.
[5] NATIONAL POLICE AGENCY, MINISTRY OF THE INTERIOR
http://www.npa.gov.tw/NPAGip/wSite/ct?xItem=26917&ctNode=11395&mp=1
[6] Statistics of Ministry of Transportation and Communication R.O.C., http://www.motc.gov.tw
[7] BenQ首款車用衛星導航多媒體主機
http://news.kakacar.com/index.asp?M=DETAIL&ID=6632
[8] LifeView
http://www.lifeview.com.tw/cht_html/html/p...form/car_pc.htm
[9] TOBE
http://www.tobe.com.tw/
[10] C. Knoeppel, A. Schanz, and B. Michaelis, “Robust vehicle detection at large distance using low resolution cameras”, Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 267- 272, 2000.
[11] S.G. Jeong, C.S. Kim, K.S. Yoon, J.N. Lee, J.I. Bae, and M.H. Lee, “Real-time lane detection for autonomous navigation”, Proceedings of 4th IEEE International Conference on Intelligent Transportation Systems, pp. 508- 513, Oakland, California, August 2001.
[12] F. Paetzold, U. Franke, and W.V. Seelen, “Lane recognition in urban environment using optimal control theory”, Proceedings of the 2000 IEEE Intelligent Vehicles Symposium, pp. 221- 226, Detroit, Michigan, October 2000.
[13] J. Goldbeck and B. Huertgen, “Lane detection and tracking by video sensors”, Proceedings of the 1999 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, pp. 74- 79, Tokyo, Japan, October 1999.
[14] D. Pomerleau, “RALPH: rapidly adapting lateral position handler”, Proceedings of the Intelligent Vehicles 95 Symposium, pp. 506- 511, Detroit, Michigan, September 1995.
[15] K. Kluge and S. Lakshmanan, “A deformable-template approach to lane detection”, Proceedings of the 1995 IEEE Intelligent Vehicles Symposium, pp. 54- 59, Detroit, Michigan, September 1995.
[16] T. Ito and K. Yamada, “Preceding Vehicle and Road Lanes Recognition Methods for RCAS Using Vision System”, Proceedings of the 1994 IEEE Symposium on Intelligent Vehicles, pp. 85- 90, 1994.
[17] K. Yamada, T. Ito, and K. Nishioka, “Road lane recognition system for RCAS”, Proceedings of the 1996 IEEE Intelligent Vehicles Symposium, pp. 177- 182, 1996.
[18] Seung Gweon Jeong; Chang Sup Kim; Dong Youp Lee; Sung Ki Ha; Dong Hwai Lee; Man Hyung Lee; Hashimoto, H., “Real-time lane detection for autonomous vehicle”, Proceedings of the 2001 Industrial Electronics, pp. 1466 - 1471 vol.3, 12- 16 June 2001.
[19] J. Sparbert, K. Dietmayer, and D. Streller, “Lane detection and street type classification using laser range images”, Proceedings of 4th IEEE International Conference on Intelligent Transportation Systems, pp. 454- 459, Oakland, California, August 2001.
[20] A. Gern, U. Franke, and P. Levi, “Advanced lane recognition-fusing vision and radar”, Proceedings of the 2000 IEEE Intelligent Vehicles Symposium, pp. 45- 51, Dearborn, MI, USA, October 2000.
[21] W.S. Wijesoma, K.R.S. Kodagoda, A.P. Balasuriya, and E.K. Teoh, “Laser and camera for road edge and mid-line detection”, Proceedings of the Second International Workshop on Robot Motion and Control, 2001, pp. 269- 274, Bukowy Dworek, Poland, October 2001.
[22] S.Y. Choi and J.M. Lee, “Optimal moving windows for real-time road image processing”, Proceedings of 2001 IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1220- 1225, Seoul, Korea, May 2001.
[23] W.S. Wijesoma, K.R.S. Kodagoda, A.P. Balasuriya, and E.K. Teoh, “Laser and camera for road edge and mid-line detection”, Proceedings of the Second International Workshop on Robot Motion and Control, 2001, pp. 269- 274, Bukowy Dworek, Poland, October 2001.
[24] Takeo Kato, Yoshiki Ninomiya, and Ichiro Masaki, “Preceding Vehicle Recognition Based on Learning From Sample Images”, IEEE Trans. on Intelligent Transportation System, vol. 3, no. 4, 2002.
[25] W. Kruger, W. Enkelmann, and S. Rossle, “Real-time estimation and tracking of optical flow vectors for obstacle detection”, Proceedings of the IEEE Intelligent Vehicle’95 Symposium, pp. 304- 309, 1995.
[26] S. M. Smith and J. M. Brady, “ASSET-2: Real-time motion segmentation and shape tracking”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 17, pp. 814- 820, 1995.
[27] M. Lutzeler and E. D. Dickmanns, “EMS-vision: recognition of intersections on unmarked road networks”, Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 302- 307, 2000.
[28] S. Denasi and G. Quaglia, “Grouping of planar structures for object reconstruction”, Proceedings of the IEEE Digital Signal Processing, 13th International Conference on, vol. 2, pp. 527- 530.
[29] A. Bensrhair, M. Bertozzi, A. Broggi, P. Miche, S. Mousset, and G. Toulminet, “A Cooperative Approach to Vision-based Vehicle Detection”, Proceedings of the IEEE Conference on Intelligent Transportation Systems, pp. 207 - 212, 2001.
[30] Sholin Kyo, Takuya Koga, and Kazuyuki Sakurai, Shinichiro Okazaki, “A Robust Vehicle Detecting and tracking System for Wet Weather Conditions using the IMAP-VISION Image Processing Board”, Proceedings of the IEEE Intelligent Transportation System, pp. 423 -428, 1999.
[31] A. Silberschatz and P. Galvin, “Operating System Concepts”, 5th, Addison Wesley, pp. 18-19, 1997.
[32] Koji Yamaguchi, Yasushi Nagayan, and Koji Ueda, Hiroyuki Nemoto, Makoto Nakagawa, “A Method for Identifying Specific Vehicles Using Template Matching”, Proceedings of the IEEE Intelligent Transportation System, pp. 8 - 13, 1999.
[33] J. K. Kearney, X. Yang, and S. Zhang, “Camera calibration using geometric constraints”, Computer Vision and Pattern Recognition, 1989. Proceedings CVPR '89., IEEE Computer Society Conference on, pp. 672 - 679, 1989.
[34] 孫正泰,“以電腦視覺為基礎之道路上障礙物偵測”,國立台灣大學資訊工程研究所,碩士論文,2001.
[35] 黃渤泓,“道路車輛偵測與相對距離估測系統”,中山大學電機工程研究所,碩士論文,2004.
[36] GPS and DGPS Overview, With a Complete RF Front-End Design, http://www.maxim-ic.com/appnotes.cfm/an_pk/3242
[37] Han-Shue Tan; Jihua Huang, “DGPS-Based Vehicle-to-Vehicle Cooperative Collision Warning: Engineering Feasibility Viewpoints”, Intelligent Transportation Systems, IEEE Transactions on Vol. 7, Issue 4, pp. 415 – 428, 2006.
[38] 張懿,“即時路面標線、車輛偵測與距離估”,淡江大學資訊工程研究所,碩士論文,2002.
[39] Ping-Cheng Hou, “The lane recognition and vehicle detection at night for a camera-assisted car on highway”, Robotics and Automation, 2003.Proceedings. ICRA '03., IEEE International Conference on Volume 2, 14-19 Sept. 2003 pp. 2110 – 2115, 2003.
[40] 鄭凌軒,“DSP-Based之車路視覺系統之研究”,國立中山大學電機工程研究所,碩士論文,2005.
[41] IEEE Std. 1616, “IEEE Standard for Motor Vehicle Event Data Recorders (MVEDRs)”, IEEE Std. 1616, Feb. 2005.
[42] Intelligent Control Technology, http://www.ict.com.tw/ARM/Davinci/LDK6446_Datasheet.pdf
[43] SXcale-NVA270 Platform, DMATEK, http://www.dmatek.com.tw/tn/viewproc.asp?id=1478
[44] Texas Instruments
http://www.ti.com/
[45] Rikaline
http://www.rikaline.com.tw/
[46] DMATEK
http://www.dmatek.com.tw/
[47] OZAKI
http://www.ozaki.com.tw/
[48] Nilesh Rajbharti, "AN738 – PIC18C CAN Routines in C", Microchip Technology, Inc, 2001
[49] MICROCHIP
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=64
[50] Linux-USB stack architecture
http://www.linux-usb.org
[51] LeeYang, Ji Hyun Yang, Eric Feron and Vishwesh Kulkarni, “Development of a Performance-Based Approach for Rear-End Collision Warning and Avoidance System for Automobiles”, IEEE Intelligent Vehicles Symposium (IV2003), June 2003
[52] Erez Dagan, oFer Mano, Gideon P. Stein, Amnon Shashua, “Forward collision warning with a single camera”, Intelligent Vehicles Symposium, 2004 IEEE 14-17, pp. 37 – 42, June 2004.
[53] C. D. Wang and J. P. Thompson., “Apparatus and method for motion detection and tracking of objects in a region for collision avoidance utilizing a real-time adaptive probabilistic neural network”, 1997.
[54] WIKIPEDIA-Optics
http://en.wikipedia.org/wiki/Optics
[55] WIKIPEDIA-Cardinal point (optics)
http://en.wikipedia.org/wiki/Gaussian_optics
[56] GPS 18 TECHNICAL SPECIFICATIONS
[57] Road Traffic Safety Portal site
http://168.motc.gov.tw/GIPSite/wSite/ct?xItem=2330&ctNode=1240&mp=1
[58] Philip Barber, Nigel Clarke, “Advance Collision Warning System”, Industrial Automation and Control: Applications in the Automotive Industry, pp. 2/1 – 2/9, 1998.
[59] Advanced Safety Vehicles, http://www.its-lectures.ae.keio.ac.jp/2004/2004_b_3e.pdf
[60] David L. Hall and James Llinas, “An Introduction to Multisensor Data Fusion”, Proceedings of the IEEE Volume 85, pp. 6 – 23, Jan. 1997.
[61] Jiawei Zhang, Keqi Wang and Qi Yue, “Data Fusion Algorithm based on Functional Link Artificial Neural Networks”, Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress onVolume 1, pp. 2806 – 2810, 2006.
[62] Jingwen Tian, Meijuan Gao and Erhong Lu, “Dynamic Collision Avoidance Path Planning for Mobile Robot Base on Multi-sensor Data Fusion by Support Vector Machine”, Mechatronics and Automation, 2007. ICMA 2007. International Conference on 5-8, pp. 2779 – 2783, Aug. 2007.