簡易檢索 / 詳目顯示

研究生: 李承洋
Lee, Cheng-Yang
論文名稱: 電化學與光學檢測在生物感測器的應用
Electrochemical and optical sensing applications in biosensors
指導教授: 蘇彥勳
Su, Yen-Hsun
共同指導教授: 羅世強
Luo, Shyh-Chyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 70
中文關鍵詞: 超疏水圖樣化電化學分析SERS細胞色素C
外文關鍵詞: hydrophobic patterning, electrochemical analysis, SERS, cytochrome c
相關次數: 點閱:80下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物轉換過程量化生物技術的應用在醫療方面極為重要。而電子設備連接到生物環境相對複雜,且轉換成電子信號是具有挑戰性的。在過去幾十年的幾個傳感概念和相關設備被開發出來,其中最常見的技術,如循環伏安法,而附加量測技術,已被證明在電化學檢測組合是有用的。此外,許多的光學生物傳感器也特別使用,主要是基於表面電漿共振技術的現象,在奈米金高折射率的表面薄層,產生表面增強拉曼散射,使得分析物結合奈米金表面產生可量測信號,如此可應用在拉曼光譜的檢測。
    在製作簡單的傳感器過程當中,利用三電極電化學聚合技術,在導電玻璃表面形成奈米金薄膜,除了提高表面活性外,也增加拉曼光譜的敏感度,是一種被廣泛運用在奈米結構上的金屬。此外,為了產出高通量分析( high-throughput analysis )的試片,電化學聚合具疏水性的導電高分子奈米結構,藉由黃光微影技術在試片上劃分親水區與疏水區,以提高試片的面積使用率。
    最後在本次實驗中,選擇生物體中最常見的氧化還原蛋白質,細胞色素C。細胞色素,一般是指一類膜結合的血紅素蛋白,以血紅素為輔基,參與電子傳遞。它可以以單體的形式或作為複合物酶中的一個亞基來發揮氧化還原作用。另外共振拉曼光譜技術已被廣泛應用於細胞色素C 活性中,但還尚未完全了解,只針對特徵峰直接做比較。因此在本文,製造利用電化學聚合技術製造簡易試片,並從電化學與光學檢測在生物檢測的應用上做相關的研究與討論。

    Here, we aim to fabricate by applying electrochemical polymerization to form patterned hydrophobic substrates for conducting polymer-based biosensors. The hydrophobic perfluoro-functionalized poly(3,4-ethylenedioxythiophene)(PEDOT-F) thin films were prepared in ionic liquids. cytochrome c (Cyt c) can be immobilized in hydrophilic domains of the substrates, which can largely promote the area utilization of the substrate.
    In this study, two type biosensing applications are demonstrated, including electrochemical analysis and Raman spectra. First, the Cyt c was immobilized on PEDOT-COOH/ITO electrode, which can reveal the electrochemical behaviors of Cyt c by applying a cyclic voltammetric potential. The results showed that the immobilized Cyt c retained its electrochemical activity for the reduction of H2O2. On the other hand, surface enhanced Raman scattering (SERS) was applied to the study of adsorption and redox changes of Cyt c on a gold nano-particles (AuNPs) electrode.

    目錄 摘要 I Abstract II 致謝 XI 目錄 XII 圖目錄 XIV 第一章緒論 1 1.1 前言 1 1.2 研究方向 3 第二章 文獻回顧與理論基礎 4 2.1 電化學法 4 2.1.1電化學分析之簡介 4 2.1.2 電化學分析之原理 6 2.2 超疏水表面 12 2.2.1 超疏水表面之發展與現況[3] 12 2.2.2 超疏水性之理論[3] 14 2.2.3 超疏水性表面之發展與應用 17 2.3 表面增強拉曼散射[21] 19 2.3.1 SERS 歷史簡介 19 2.3.2 SERS 之機制[21] 20 2.3.3 細胞色素C之拉曼光譜 25 第三章 實驗流程與方法 28 3.1 實驗流程圖 28 3.2 實驗材料與設備 29 3.2.1 材料 29 3.2.2 設備 33 3.3 實驗步驟 37 3.3.1 基板製備 37 3.3.2 電極修飾 43 3.3.3 電化學分析 45 3.3.4 拉曼光譜分析 47 第四章 實驗結果與討論 48 4.1高通量圖樣化基板之探討 48 4.1.1奈米結構對表面性質之影響 48 4.1.2 接觸角量測之親疏水性的比較 50 4.1.3 圖樣化之應用 53 4.2 電化學分析之探討 55 4.2.1 PEDOT-COOH對CV電流訊號的增強 55 4.2.2 細胞色素C之氧化還原特性 57 4.2.3 細胞色素對過氧化氫之催化 59 4.3 拉曼光譜分析之探討 60 4.3.1 奈米金微結構之表面增強拉曼效應 60 4.3.2 R6G 在 SERS 金基板上之訊號增強 62 4.3.3 細胞色素C之拉曼光譜 64 第五章 結論與未來展望 65 第六章 參考文獻 67

    第六章 參考文獻
    1. Martinkova, P. and M. Pohanka, Biosensors for Blood Glucose and Diabetes Diagnosis:Evolution, and Current Status Analytical Letters, 2015. 48(16): p. 2509-2532.
    2. Koposova, E., et al., Direct Electrochemistry of Cyt c and Hydrogen Peroxide Biosensing on Oleylamine- and Citrate-Stabilized Gold Nanostructures. Sensors and Actuators B-Chemical, 2015. 207: p. 1045-1052.
    3. Darmanin, T., et al., Superhydrophobic Surfaces by Electrochemical Processes. Advanced Materials, 2013. 25(10): p. 1378-1394.
    4. Hondros, E.D., Dr. Thomas Young - Natural philosopher. Journal of Materials Science, 2005. 40(9-10): p. 2119-2123.
    5. Bhushan, B. and Y.C. Jung, Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction. Progress in Materials Science, 2011. 56(1): p. 1-108.
    6. Wenzel, R.N., Resistance of Solid Surfaces to Wetting by Water. Industrial and Engineering Chemistry, 1936. 28: p. 988-994.
    7. Cassie, A.B.D. and S. Baxter, Wettability of Porous Surfaces. Transactions of the Faraday Society, 1944. 40: p. 0546-0550.
    8. He, X.N., et al., Surface-Enhanced Raman Spectroscopy using Gold-Coated Horizontally Aligned Carbon Nanotubes. Nanotechnology, 2012. 23(20).
    9. Modlinska, A., et al., Langmuir-Blodgett Films as Aligning Layers for Homeotropic Alignment of Liquid Crystal Molecules. Liquid Crystals, 2013. 40(6): p. 831-840.
    10. Papadimitropoulos, G. and D. Davazoglou, Deposition of Thermal and Hot-Wire Chemical Vapor Deposition Copper Thin Films on Patterned Substrates. Journal of Nanoscience and Nanotechnology, 2011. 11(9): p. 8237-8241.
    11. Zhang, X., et al., Adhesion and Friction Studies of Microsphere-Patterned Surfaces in Contact with Atomic Force Microscopy Colloidal Probe. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2012. 401: p. 90-96.
    12. Higuchi, T., et al., One-Step Nanopatterning of Conjugated Polymers by Electron-Beam-Assisted Electropolymerization. Microscopy, 2015. 64(3): p. 205-212.
    13. Tadanaga, K., J. Morinaga, and T. Minami, Formation of Superhydrophobic-Superhydrophilic Pattern on Flowerlike Alumina Thin Film by the Sol-Gel Method. Journal of Sol-Gel Science and Technology, 2000. 19(1-3): p. 211-214.
    14. Zhang, X.T., O. Sato, and A. Fujishima, Water Ultrarepellency Induced by Nanocolumnar ZnO Surface. Langmuir, 2004. 20(14): p. 6065-6067.
    15. Hancock, M.J., et al., Anisotropic Material Synthesis by Capillary Flow in a Fluid Stripe. Biomaterials, 2011. 32(27): p. 6493-6504.
    16. Hancock, M.J., et al., Surface-Tension-Driven Gradient Generation in a Fluid Stripe for Bench-Top and Microwell Applications. Small, 2011. 7(7): p. 892-901.
    17. Ishizaki, T. and N. Saito, Rapid Formation of a Superhydrophobic Surface on a Magnesium Alloy Coated with a Cerium Oxide Film by a Simple Immersion Process at Room Temperature and Its Chemical Stability. Langmuir, 2010. 26(12): p. 9749-9755.
    18. Chen, L.L., D.B. Folsom, and C.P. Ko, The Remodeling of Synaptic Extracellular-Matrix and its Dynamic Ynamic Relationship With Nerve-Terminals at Living Frog Neuromuscular-Junctions. Journal of Neuroscience, 1991. 11(9): p. 2920-2930.
    19. Badge, I., et al., Tuning Surface Wettability using Single Layered and Hierarchically Ordered Arrays of Spherical Colloidal Particles. Soft Matter, 2013. 9(11): p. 3032-3040.
    20. Piret, G., et al., Culture of Mammalian Cells on Patterned Superhydrophilic/Superhydrophobic Silicon Nanowire Arrays. Soft Matter, 2011. 7(18): p. 8642-8649.
    21. Krolikowska, A., Surface-Enhanced Resonance Raman Scattering (SERRS) as a Tool for the Studies of Electron Transfer Proteins Attached to Biomimetic Surfaces: Case of Cytochrome c. Electrochimica Acta, 2013. 111: p. 952-995.
    22. Sockalingum, D., M. Fleischmann, and M.M. Musiani, Near-Infrared Fourier-Transform Surface-Enhanced Raman-Scattering of Azole Copper Corrosion-Inhibitors in Aqueous Chloride Media. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 1991. 47(9-10): p. 1475-1485.
    23. Haynes, C.L., et al., Surface-Enhanced Raman Sensors: Early History and the Development of Sensors for Quantitative Biowarfare Agent and Glucose Detection. Journal of Raman Spectroscopy, 2005. 36(6-7): p. 471-484.
    24. Pal, T., et al., Surfactant Mediated Nanoparticle Aggregation and its Application for SERS Studies. Journal of the Indian Chemical Society, 2000. 77(1): p. 34-35.
    25. Le Ru, E.C., et al., Advanced Aspects of Eelectromagnetic SERS Enhancement Factors at a Hot Spot. Journal of Raman Spectroscopy, 2008. 39(9): p. 1127-1134.
    26. Chowdhury, J., S. Chandra, and M. Ghosh, Adsorption and Trace Detection of Pharmacologically Significant 5-Methylthio-1, 3, 4-Thiadiazole-2-Thiol Molecule Adsorbed on Silver Nanocolloids and Understanding the Role of Albrecht's "A" and Herzberg-Teller Contributions in the SERS Spectra. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2015. 135: p. 935-946.
    27. Niaura, G., A.K. Gaigalas, and V.L. Vilker, Non-Resonant SERS Study of the Adsorption of Cytochrome c on a Silver Electrode. Journal of Electroanalytical Chemistry, 1996. 416(1-2): p. 167-178.

    下載圖示 校內:2017-02-18公開
    校外:2017-02-18公開
    QR CODE