| 研究生: |
林宏儒 Lin, Hong-Ru |
|---|---|
| 論文名稱: |
24- 及77-GHz 毫米波CMOS帶通濾波器、相移器及類循環器之研製 Research on 24- and 77-GHz Millimeter-Wave CMOS On-Chip Bandpass Filter, Phase Shifter and Quasi-Circulator |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 帶通 、相移器 、類循環器 |
| 外文關鍵詞: | bandpass filter, phase shifter, circulator |
| 相關次數: | 點閱:112 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究應用於24-及77-GHz毫米波頻段之CMOS RFICs射頻前端被動元件的設計與製作,晶片製作使用國家晶片中心提供的標準TSMC CMOS 0.18 μm製程。77-GHz CMOS帶通濾波器使用慢波步階式阻抗共振器,比起傳統開路短枝型濾波器縮小率可達80 %,論文討論模擬與量測結果。24-GHz類循環器的部份為使用相位消除技術之CMOS類循環器,以寬邊帶耦合器架構搭配相位消除與結合,利用晶片設計之多層式結構增加耦合量,得到較好的類循環器效果。24-GHz主動濾波器的部份為採用NMOS交錯耦合對提供負電阻,採用兩級串接架構之主動濾波器,可操作在低電壓,並在有限功率的考量下選擇電晶體尺寸,達成低功率設計。輸入與輸出匹配利用電容耦合的匹配方式,所有傳輸走線皆使用HFSS模擬,並代回Agilent ADS進行共同模擬,可以有效達到主動濾波器之低損耗目標。24-GHz相移器的部份為採用反射式負載相移器,整體電路以寬邊帶耦合器與兩個反射式負載諧振電路組成,藉由使用負電阻電路,可達到低損耗之能力表現,並有效抑制插入損耗之變化,負電阻電路可產生補償插入損耗的作用。
This thesis presents the design of the 24- and 77-GHz CMOS bandpass filters, K-band quasi-circulator and phase shifter fabricated by TSMC 0.18-μm CMOS process. The 77-GHz CMOS bandpass filter uses the slow-wave SIR structures to design the filter with two available zero-frequencies. Compared with the original stub filter, the size reduction of the proposed bandpass filter is about 80% when operating at the same resonance frequency. The K-band quasi circulator uses the phase cancellation technology and the multilayer tight coupling structure to enhance the coupling factor of the 3-dB coupler. The 24-GHz active filter using negative resistance circuit was design to compensate the loss of the microstrip half-wave length resonators and improve the insertion loss in the passband. The 24-GHz CMOS phase shifter combined with the broadside coupler and the reflection-type load adds the negative resistor circuit to obtain a low insertion loss variation and wide phase tuning range.
[1] E. van der Heijden, M. Notten, G. Dolmans, H. Veenstra and R. Pijper, “On-chip third-order band-pass filters for 24 and 77 GHz car radar,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 697-700, Jun. 2006.
[2] C.-Y. Hsu, C.-Y. Chen, and H.-R. Chuang, “A 60-GHz millimeter-wave bandpass filter using 0.18-µm CMOS technology,” IEEE Electron Device Lett., vol. 29, no. 3, Mar. 2008.
[3] H. Zhang and K. J. Chen, “ A tri-section stepped-impedance resonator for cross-coupled bandpass filters,” IEEE Microwave Wireless Components Lett., vol. 15, no. 6, Jun. 2005.
[4] M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413-1417, Dec. 1980.
[5] Y.-Z. Wang and M.-L. Her,”Compact microstrip bandstop filters using stepped-impedance resonator (SIR) and spur-line sections,” IEE Proc.-Microw. Antennas Propag., vol. 153, no. 5, Oct. 2006.
[6] C. Quendo, E. Rius, and C. Person, “Narrow bandpass filters using dual-behavior resonators,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 734-743, Mar. 2003.
[7] K. Srisathit, R. Phromloungsri, S. Patisang, and M. Chongcheawchamnan, “A new microstrip duplexer using open-circuited dual-behavior resonator,” in Proc. Asia-Pacific Microwave Conf. vol. 5, Dec. 2005.
[8] Y. Y., K S. Lee, C. Kim, K.-M. Kim, J.-W Jung, “Basic RF characteristics of the microstrip line employing periodically perforated ground metal and its application to highly miniaturized on-chip passive components on GaAs MMIC” IEEE Trans. Microwave. Theory Tech., vol. 54, no. 10, pp. 3805–3817, Oct. 2006.
[9] S. Sun, J. Shi, L. Zhu, S. Rustagi, and K. Mouthaan, “Millimeter-wave bandpass filters by standard 0.18-mm CMOS technology,” IEEE Electron Device Lett., vol. 28, no. 3, pp. 783-787, Apr. 2007.
[10] C.-Y. Hsu, C.-Y. Chen and H.-R. Chuang, “ A 60-GHz millimeter-wave bandpass filter using 0.18-μm CMOS technology,” IEEE Electron Device Lett., vol. 29, no. 3, pp. 246–248, Mar. 2008.
[11] L. K. Yeh, C. Y. Chen, and H. R. Chuang, “A millimeter-wave CPW CMOS on-chip bandpass filter using conductor-backed resonators,” IEEE Electron Device Letters. vol. 31 no. 5, pp. 399-401, May 2010.
[12] W.-K.-W. Ali and S.-H. AI-Charchafchi, “Using equivalent dielectric constant to simplify the analysis of patch microstrip antenna with multi layer substrates,” in Proc. IEEE AP-S Int. Symp., vol. 2, pp. 676-679, Jun. 1998.
[13] M.-G. Lee, T.-S. Yun, K.-B. Kim, D.-H. Shin, T.-J. Baek and J.-C. Lee, “Design of millimeter-wave bandpass filters with λg/4 short stubs using GaAs surface micromatchining,” 35th European Microwave Conference, Vol. 2, Oct. 2005.
[14] B. Dehlink, M. Engl, K. Aufinger and H. Knapp, “Integrated bandpass filter at 77 GHz in SiGe technology,” IEEE Microwave and wireless component letters, Vol. 17, No. 5, pp. 346-348, May 2007.
[15] M.-F. Lei and H. Wang, “Implementation of reducing-size dual-mode ring filters in LTCC and MMIC processes at millimeter wave frequencies,” 36th European Microwave Conference, Sep. (2006), pp. 537-540.
[16] S.-J. Chung, S.-M. Chen, and Y.-C. Lee, “A novel bi-directional amplifier with applications in active van atta retro directive arrays,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 542–547, Feb. 2003.
[17] S. Lucyszyn and I. D. Robertson, “Decade bandwidth MMIC analogue phase shifter,” in Proc. IEE Colloq. Multi-Octave Microwave Circuits, Nov. 1991, pp. 2/1–2/6.
[18] A. Tessmann, S. Kudszus, T. Feltgen, M. Riessle, C. Sklarczyk, and W. H. Haydl, “Compact single-chip W-band FMCWradar modules for commercial high-resolution sensor applications,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 12, pp. 2995–3001, Dec. 2002.
[19] Y. Ayasli, “Field effect transistor circulators”, IEEE Trans. on Magnetics, Vol. 25,Issue 25, pp. 3242-3247, Sep. 1989.
[20] S. Tanaka, N. Shimomura, and K. Ohtake, “Active circulators-the realization of circulators using transistors,” Proc. IEEE, vol. 53, no. 3, pp.260–267, Mar. 1965.
[21] M. A. Smith, “GaAs monolithic implementation of active circulators, “in IEEE MTT-S Int. Dig., May 1988, pp. 1015–1015.
[22] S. Hara, T. Tokumitsu, and M. Aikawa, “Novel unilateral circuits for MMIC circulators,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 10,pp. 1399–1406, Oct. 1990.
[23] A. Gasmi, B. Huyart, E. Bergeault, and L. Jallet, “Quasi-circulator module design using conventional MMIC components in the frequency range 0.45–7.2 GHz,” Electron. Lett. , vol. 31, no. 15, pp. 1261–1262, Jul. 1995.
[24] M. J. Cryan and P. S. Hall, “An integrated active circulator antenna,”IEEE Microwave Guided Wave Lett., vol. 7, no. 7, pp. 190–191, Jul. 1997.
[25] C. E. Saavedra and Y. Zheng, “Active quasi-circulator realization with gain elements and slow-wave couplers,” IET Microwave Antennas Propag., vol. 1, no. 5, pp. 1020–1023, 2007.
[26] H.-M. Hsu, J.-Y. Chang, J.-G. Su, C.-C. Tsai, S.-C.Wong, C. W. Chen,K. R. Peng, S. P. Ma, C.H. Chen, T. H.Yeh, C. H. Lin, Y. C. Sun, and C.Y. Chang, “A 0.18- um foundry RF CMOS technology with 70-GHz for single chip system solutions,” in IEEE MTT-S Int. Dig., 2001,pp. 1869–1872.
[27] Y. Zheng and C. E. Saavedra, “An ultra-compact CMOS variable phase shifter for 2.4-GHz ISM applications,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 6, pp. 1349–1354, Jun. 2008.
[28] D. Kother, B. Hopf, T. Sporkmann, I.Wolff, and S. Kosslowski, “New types of MMIC circulators,” in IEEE MTT-S Int. Dig., 1995, pp. 16–20.
[29] G. Carchon and B. Nanwelaers, “Power and noise limitations of active circulators,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 2, pp.316–319, Feb. 2000.
[30] S. K. Cheung, T. P. Halloran, W. H. Weedon, C. P. Caldwell, Applied Radar Inc., N. Kingstown, “MMIC-based quadrature hybrid quasi-circulators for simultaneous transmit and receive,” IEEE Trans. Microw. Theory Tech., vol.99, pp.1-1, Feb.2010.
[31] D. Kother, B. Hopf, T. Sporkmann, and I.Wolff, “Active CPW MMIC circulator for the 40 GHz band,” in Proc. 24th Eur. Microw. Conf., Cannes, France, 1994, pp. 542–547.
[32] A. Gasmi, B. Huyart, E. Bergeault, and L. Jallet, “Noise and power optimization of MMIC quasi-circulator,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 9, pp. 1572–1577, Sep. 1997.
[33] S. Shin, J. Huang, K. Lin, and H. Wang, “A 1.5–9.6 GHz monolithic active quasi-circulator in 0.18 um CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 800–802, Dec. 2008.
[34] Y. Zheng and C. Saavedra, “Active quasi-circulator MMIC using OTAs,” IEEE Microw. Wireless Compon. Lett, vol. 19, no. 4, pp.218–220, Apr. 2009.
[35] S. B. Cohn, “Characteristic impedances of broadside-coupled strip transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 8, no. 6 , pp. 633-637, Nov. 1960.
[36] 劉佳協, 60-GHz毫米波CMOS射頻前端RFICs及關鍵被動元件之研究設計,國立成功大學電腦與通信工程研究所碩士論文,民國九十六年。
[37] C.-Y. Kim, J.-G. Kim, J. H. Oum, J. R. Yang, D.-K. Kim, J. H. Choi, S.-W. Kwon, S.-H. Jeon, J.-W. Park, and S. Hong, “Tx leakage cancellers for 24 GHz and 77 GHz vehicular radar applications,” IEEE Microw. Theory Tech. Symp. Dig., pp. 1402 – 1405, June, 2006.
[37] C.-Y. Hsu, H.-R. Chuang, C.-Y. Chen,” Design of 60-GHz millimeter- wave bandpass filter using 0.18-μm CMOS technology,” IEEE Electron Device Lett., Vol. 29, No. 3, pp. 246-248, March 2008.
[38] C.-Y. Hsu, C.-Y. Chen and H.-R. Chuang, “70-GHz folded loop dual- mode bandpass filter fabricated using 0.18-μm standard CMOS technology,” IEEE Microw. Wireless Compon. Lett. vol. 18, no.9, pp. 587-589, Sep. 2008
[39] C.-K. C. Tzuang, H.-H. Wu, H.-S. Wu, and Johnsea Chen, “CMOS active bandpass filter using compacted synthetic quasi-TEM lines at C-Band,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, Dec. 2006.
[40] K.-K. Huang, M.-J. Chiang, and C.-K. C. Tzuang, “A 3.3 mW K-band 0.18-μm 1P6M CMOS acitve bandpass filter using complementary current-reuse pair,” IEEE Microw. Wireless Compon. Lett. vol. 18, no.2, Feb. 2008.
[41] Joseph S. Wong, “Microstrip tapped-line filter design,” IEEE Trans. Microw. Theory Tech., vol. 27, no. 1, Jan. 1979.
[42] B. Razavi, “Design of analogy CMOS integrated circuits,” Mc Graw Hill.2001.
[43] M. Ito, K. Maruhashi, S. Kishimoto, and K. Ohata “A 60 GHz-band coplanar MMIC active filter,” IEEE MTT-S Int. Microwave Symp. Dig., 2003.
[44] K.-W. Fan, C.-C. Weng, Z.-M. Tasi, H. Wang, and S.-K. Jeng “K-Band MMIC active bans-pass filters,” IEEE Microw. Wireless Compon. Lett. vol. 15, no.1, Jun. 2005.
[45] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filter, impedance-matching networks, and coupling structures, Norwood, MA: Artech House, 1980, ch.8.
[46] D. M. Pozar, Microwave Engineering, 3rd edition, John Wiley & Sons, Inc., 2005.
[47] P. Madsen, J.-H. Mikkelsen, J.-C. Lindof and T. Larsen, “An RF CMOS Q-enhance LC resonator,” in Proc. IEEE Norchip Conf., Nov. 2004.
[48] C.-Y. Chang and T. Itoh, “Microwave active filters based on coupled negative resistance method,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 12, Decv. 1990.
[49] M. Ito, K. Maruhashi, S. Kishimoto and K. Ohata, “60-GHz-Band coplanar MMIC active filter,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, Mar. 2004.
[50] 林育聖, 60-GHz與26-/77-GHz 雙頻帶CMOS被動元件及主動濾波器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十八年。
[51] Federal Communications Commission, “Amendment of parts 2, 15 and 97 of the commission’s rules to permit use of radio frequencies above 40 GHz for new radio applications ,” FCC 95-499, ET Docket No. 94-124, RM-8308, Dec. 15, 1995.
[52] B. T. Henoch and P. Tamm, ”A 360o reflection-type diode phase modulator” IEEE Trans. Microw. Theory Tech., vol. 19, no. 1, pp.103-105, Jan. 1971.
[53] Y. Yu, et al., “A 60 GHz digitally controlled phase shifter in CMOS,” in Proc. 34th Eur. Solid-State Circuits Conf. (ESSCIRC’ 08), Sep. 2008, pp. 250-253.
[54] H.Zarei and D.Allstot, “A low-loss phase shifter MMIC in 180 nm CMOS for multiple-antenna receivers,” in Proc. Int. Solid-State Circuits Conf., Feb. 2004, pp. 392-393.
[55] F. Ellinger, R. Vogt, and W. Bachtold, “Compact reflective-type phase shifter MMIC for C-band using a lumped-element coupler,”IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 913–917, May 2001.
[56] F. Ellinger, R. Vogt, and W. Bachtold, “Ultracompact reflective type phase shifter MMIC at C-band with 360 phase-control range for smart antenna combining,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481–486, Apr. 2002.
[57] C. S. Lin, S. F. Chang, C. C. Chang, H. Y. Shu, “Design of a reflection- type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Trans. Micro. Theory Tech., vol. 55, no. 9, pp. 1862-1868, Sep, 2007.
[58] H.-K. Chiou, T.-Y. Yang, Y.-C. Hsu, S.-G. Lin and Y.-Z. Juang,” 15–60 GHz asymmetric broadside coupled balun in 0.18 lm CMOS technology,” Electron. Lett. , vol. 43, no. 19, Sep. 2007.
[59] Biglarbegian, B., Nezhad-Ahmadi, M.R., Fakharzadeh, M., Safavi-Naeini, S., “Millimeter-wave reflective-type phase shifter in CMOS technology,” Electron. Lett. , Vol. 19, No. 9, pp. 560-562, Sep. 2009.
[60] H. Zarei, C.T. Charles, D.J. Allstot, “Reflective-type phase shifters for multiple antenna transceivers, “IEEE Trans. Circuits and Systems, vol. 54, no. 8, pp. 1647-1656, Aug. 2007.
[61] J. C. Wu, C. C. Chang, S. F. Chang and T. Y. Chin, “A 24-GHz full-360° CMOS reflection-type phase shifter MMIC with low loss-variation, “in RFIC Symp. Dig., Atlanta, GA, Jun. 2008, pp. 365-368.
[62] J. Grajal, J. Gisermo, M. Mahfoudi, and F. Petz, “A1.4–2.7-Ghz analog MMIC vector modulator for a crossbar beam forming network,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 10, pp. 1705–1714, Oct. 1997.
[63] P.-Y. Chen, T.-W. Huang, H. Wang, Y.-C. Wang, C.-H. Chen, and P.-C. Chao, “K-band HBT and HEMT monolithic active phase shifters using vector sum method,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1414–1424, May 2004.
[64] H. Zarei, A. Ecker, J. Park, and D. Allstot, “A full-range all-pass variable phase shifter for multiple antenna receivers,” in Proc. Int. Symp. on Circuits and Systems, Kobe, Japan, May 2005, pp. 2100–2103.
[65] F. Ellinger, H. Jackel, and W. Bachtold, “Varactor-loaded transmissionline phase shifter at C-band using lumped elements,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1135–1140, Apr. 2003.
[66] C. Lu, A. Pham, and D. Livezey, “Development of multi-band phase shifters in 180-nm RF CMOS technology with active loss compensation,”IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 40–45, Jan. 2006.
[67] F. Ellinger and W. Bachtold, “Novel principle for vector modulator based phase shifters operating with only one control voltage,” IEEE J. Solid-State Circuits, vol. 37, no. 10, pp. 1256–1259, Oct. 2002.
[68] H. Hayashi, M. Muraguchi, Y. Umeda, and T. Enoki, “A high-Q broadband active inductor and its application to a low-loss analog phase shifter,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 12, pp. 2369–2374, Dec. 1996.
[69] B. T. Henoch and P. Tamm,”A 360° reflection-type diode phase modulator” IEEE Trans. Microw. Theory Tech., vol.19, no.1, pp.103-105, Jan1971.
[70] A. Bourdoux, J. Nsenga, W. V. Thillo, F. Horlin and L. V. d. Perre, “Air Interface and Physical Layer techniques for 60 GHz WPANs,” Communications and Vehicular Technology Symposium, pp. 1-6, Nov. 2006.
[71] B. Sklar, Digital Communications: Fundamental and Applications, 2nd edition, Prentice Hall, pp. 249, 2001.
[72] S. P. Voinigescu, M. Gordon, C. Lee, T. Yao, A. Mangan and K. Yau, “System-on-Chip Design Beyond 50 GHz,” System-on-Chip for Real-time Applications International Workshop, pp. 10-13, Jul. 2005.