簡易檢索 / 詳目顯示

研究生: 林宏儒
Lin, Hong-Ru
論文名稱: 24- 及77-GHz 毫米波CMOS帶通濾波器、相移器及類循環器之研製
Research on 24- and 77-GHz Millimeter-Wave CMOS On-Chip Bandpass Filter, Phase Shifter and Quasi-Circulator
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 79
中文關鍵詞: 帶通相移器類循環器
外文關鍵詞: bandpass filter, phase shifter, circulator
相關次數: 點閱:112下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究應用於24-及77-GHz毫米波頻段之CMOS RFICs射頻前端被動元件的設計與製作,晶片製作使用國家晶片中心提供的標準TSMC CMOS 0.18 μm製程。77-GHz CMOS帶通濾波器使用慢波步階式阻抗共振器,比起傳統開路短枝型濾波器縮小率可達80 %,論文討論模擬與量測結果。24-GHz類循環器的部份為使用相位消除技術之CMOS類循環器,以寬邊帶耦合器架構搭配相位消除與結合,利用晶片設計之多層式結構增加耦合量,得到較好的類循環器效果。24-GHz主動濾波器的部份為採用NMOS交錯耦合對提供負電阻,採用兩級串接架構之主動濾波器,可操作在低電壓,並在有限功率的考量下選擇電晶體尺寸,達成低功率設計。輸入與輸出匹配利用電容耦合的匹配方式,所有傳輸走線皆使用HFSS模擬,並代回Agilent ADS進行共同模擬,可以有效達到主動濾波器之低損耗目標。24-GHz相移器的部份為採用反射式負載相移器,整體電路以寬邊帶耦合器與兩個反射式負載諧振電路組成,藉由使用負電阻電路,可達到低損耗之能力表現,並有效抑制插入損耗之變化,負電阻電路可產生補償插入損耗的作用。

    This thesis presents the design of the 24- and 77-GHz CMOS bandpass filters, K-band quasi-circulator and phase shifter fabricated by TSMC 0.18-μm CMOS process. The 77-GHz CMOS bandpass filter uses the slow-wave SIR structures to design the filter with two available zero-frequencies. Compared with the original stub filter, the size reduction of the proposed bandpass filter is about 80% when operating at the same resonance frequency. The K-band quasi circulator uses the phase cancellation technology and the multilayer tight coupling structure to enhance the coupling factor of the 3-dB coupler. The 24-GHz active filter using negative resistance circuit was design to compensate the loss of the microstrip half-wave length resonators and improve the insertion loss in the passband. The 24-GHz CMOS phase shifter combined with the broadside coupler and the reflection-type load adds the negative resistor circuit to obtain a low insertion loss variation and wide phase tuning range.

    第一章 緒論 1 1.1 毫米波研究背景及動機 1 1.2 短距離汽車防撞雷達射頻前端系統簡介 2 1.3 論文架構 4 第二章 使用慢波步階式阻抗共振器之77-GHz CMOS帶通濾波器 5 2.1 濾波器設計與原理 5 2.2 Slow-wave Electronic Bandgap structure介紹 10 2.3 慢波電磁能隙步階式阻抗帶通濾波器 13 2.4 設計流程與量測設定 15 2.5 模擬與量測結果 19 2.6 結果與討論 20 第三章 使用相位消除技術之K-Band CMOS類循環器 21 3.1 類循環器介紹 21 3.2 寬邊帶耦合器設計 24 3.3 類循環器設計流程 26 3.4 模擬與量測結果 29 3.5 結果與討論 33 第四章 具負電阻補償之24-GHz CMOS主動濾波器 35 4.1 帶通濾波器介紹 35 4.2 主動濾波器設計理論與研究發展 36 4.3 半波長共振器與負電阻電路設計 36 4.3.1 半波長共振器之濾波器 36 4.3.2 主動負電阻電路 38 4.3.3 整體電路架構 41 4.4 設計考量與流程 42 4.5 模擬與量測結果 44 4.6 結果與討論 52 第五章 具負電阻補償之K-band CMOS反射式負載相移器 53 5.1 相移器介紹 53 5.2 相移器原理與架構 55 5.2.1 反射式負載電路設計 57 5.2.2 寬邊帶耦合器設計 59 5.2.3 負電阻電路設計 61 5.3 設計流程與環境設定 62 5.4 模擬與量測結果 64 5.5 結果與討論 68 第六章 結論 71 參考文獻 73

    [1] E. van der Heijden, M. Notten, G. Dolmans, H. Veenstra and R. Pijper, “On-chip third-order band-pass filters for 24 and 77 GHz car radar,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 697-700, Jun. 2006.
    [2] C.-Y. Hsu, C.-Y. Chen, and H.-R. Chuang, “A 60-GHz millimeter-wave bandpass filter using 0.18-µm CMOS technology,” IEEE Electron Device Lett., vol. 29, no. 3, Mar. 2008.
    [3] H. Zhang and K. J. Chen, “ A tri-section stepped-impedance resonator for cross-coupled bandpass filters,” IEEE Microwave Wireless Components Lett., vol. 15, no. 6, Jun. 2005.
    [4] M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413-1417, Dec. 1980.
    [5] Y.-Z. Wang and M.-L. Her,”Compact microstrip bandstop filters using stepped-impedance resonator (SIR) and spur-line sections,” IEE Proc.-Microw. Antennas Propag., vol. 153, no. 5, Oct. 2006.
    [6] C. Quendo, E. Rius, and C. Person, “Narrow bandpass filters using dual-behavior resonators,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 734-743, Mar. 2003.
    [7] K. Srisathit, R. Phromloungsri, S. Patisang, and M. Chongcheawchamnan, “A new microstrip duplexer using open-circuited dual-behavior resonator,” in Proc. Asia-Pacific Microwave Conf. vol. 5, Dec. 2005.
    [8] Y. Y., K S. Lee, C. Kim, K.-M. Kim, J.-W Jung, “Basic RF characteristics of the microstrip line employing periodically perforated ground metal and its application to highly miniaturized on-chip passive components on GaAs MMIC” IEEE Trans. Microwave. Theory Tech., vol. 54, no. 10, pp. 3805–3817, Oct. 2006.
    [9] S. Sun, J. Shi, L. Zhu, S. Rustagi, and K. Mouthaan, “Millimeter-wave bandpass filters by standard 0.18-mm CMOS technology,” IEEE Electron Device Lett., vol. 28, no. 3, pp. 783-787, Apr. 2007.
    [10] C.-Y. Hsu, C.-Y. Chen and H.-R. Chuang, “ A 60-GHz millimeter-wave bandpass filter using 0.18-μm CMOS technology,” IEEE Electron Device Lett., vol. 29, no. 3, pp. 246–248, Mar. 2008.
    [11] L. K. Yeh, C. Y. Chen, and H. R. Chuang, “A millimeter-wave CPW CMOS on-chip bandpass filter using conductor-backed resonators,” IEEE Electron Device Letters. vol. 31 no. 5, pp. 399-401, May 2010.
    [12] W.-K.-W. Ali and S.-H. AI-Charchafchi, “Using equivalent dielectric constant to simplify the analysis of patch microstrip antenna with multi layer substrates,” in Proc. IEEE AP-S Int. Symp., vol. 2, pp. 676-679, Jun. 1998.
    [13] M.-G. Lee, T.-S. Yun, K.-B. Kim, D.-H. Shin, T.-J. Baek and J.-C. Lee, “Design of millimeter-wave bandpass filters with λg/4 short stubs using GaAs surface micromatchining,” 35th European Microwave Conference, Vol. 2, Oct. 2005.
    [14] B. Dehlink, M. Engl, K. Aufinger and H. Knapp, “Integrated bandpass filter at 77 GHz in SiGe technology,” IEEE Microwave and wireless component letters, Vol. 17, No. 5, pp. 346-348, May 2007.
    [15] M.-F. Lei and H. Wang, “Implementation of reducing-size dual-mode ring filters in LTCC and MMIC processes at millimeter wave frequencies,” 36th European Microwave Conference, Sep. (2006), pp. 537-540.
    [16] S.-J. Chung, S.-M. Chen, and Y.-C. Lee, “A novel bi-directional amplifier with applications in active van atta retro directive arrays,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 542–547, Feb. 2003.
    [17] S. Lucyszyn and I. D. Robertson, “Decade bandwidth MMIC analogue phase shifter,” in Proc. IEE Colloq. Multi-Octave Microwave Circuits, Nov. 1991, pp. 2/1–2/6.
    [18] A. Tessmann, S. Kudszus, T. Feltgen, M. Riessle, C. Sklarczyk, and W. H. Haydl, “Compact single-chip W-band FMCWradar modules for commercial high-resolution sensor applications,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 12, pp. 2995–3001, Dec. 2002.
    [19] Y. Ayasli, “Field effect transistor circulators”, IEEE Trans. on Magnetics, Vol. 25,Issue 25, pp. 3242-3247, Sep. 1989.
    [20] S. Tanaka, N. Shimomura, and K. Ohtake, “Active circulators-the realization of circulators using transistors,” Proc. IEEE, vol. 53, no. 3, pp.260–267, Mar. 1965.
    [21] M. A. Smith, “GaAs monolithic implementation of active circulators, “in IEEE MTT-S Int. Dig., May 1988, pp. 1015–1015.
    [22] S. Hara, T. Tokumitsu, and M. Aikawa, “Novel unilateral circuits for MMIC circulators,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 10,pp. 1399–1406, Oct. 1990.
    [23] A. Gasmi, B. Huyart, E. Bergeault, and L. Jallet, “Quasi-circulator module design using conventional MMIC components in the frequency range 0.45–7.2 GHz,” Electron. Lett. , vol. 31, no. 15, pp. 1261–1262, Jul. 1995.
    [24] M. J. Cryan and P. S. Hall, “An integrated active circulator antenna,”IEEE Microwave Guided Wave Lett., vol. 7, no. 7, pp. 190–191, Jul. 1997.
    [25] C. E. Saavedra and Y. Zheng, “Active quasi-circulator realization with gain elements and slow-wave couplers,” IET Microwave Antennas Propag., vol. 1, no. 5, pp. 1020–1023, 2007.
    [26] H.-M. Hsu, J.-Y. Chang, J.-G. Su, C.-C. Tsai, S.-C.Wong, C. W. Chen,K. R. Peng, S. P. Ma, C.H. Chen, T. H.Yeh, C. H. Lin, Y. C. Sun, and C.Y. Chang, “A 0.18- um foundry RF CMOS technology with 70-GHz for single chip system solutions,” in IEEE MTT-S Int. Dig., 2001,pp. 1869–1872.
    [27] Y. Zheng and C. E. Saavedra, “An ultra-compact CMOS variable phase shifter for 2.4-GHz ISM applications,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 6, pp. 1349–1354, Jun. 2008.
    [28] D. Kother, B. Hopf, T. Sporkmann, I.Wolff, and S. Kosslowski, “New types of MMIC circulators,” in IEEE MTT-S Int. Dig., 1995, pp. 16–20.
    [29] G. Carchon and B. Nanwelaers, “Power and noise limitations of active circulators,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 2, pp.316–319, Feb. 2000.
    [30] S. K. Cheung, T. P. Halloran, W. H. Weedon, C. P. Caldwell, Applied Radar Inc., N. Kingstown, “MMIC-based quadrature hybrid quasi-circulators for simultaneous transmit and receive,” IEEE Trans. Microw. Theory Tech., vol.99, pp.1-1, Feb.2010.
    [31] D. Kother, B. Hopf, T. Sporkmann, and I.Wolff, “Active CPW MMIC circulator for the 40 GHz band,” in Proc. 24th Eur. Microw. Conf., Cannes, France, 1994, pp. 542–547.
    [32] A. Gasmi, B. Huyart, E. Bergeault, and L. Jallet, “Noise and power optimization of MMIC quasi-circulator,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 9, pp. 1572–1577, Sep. 1997.
    [33] S. Shin, J. Huang, K. Lin, and H. Wang, “A 1.5–9.6 GHz monolithic active quasi-circulator in 0.18 um CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 800–802, Dec. 2008.
    [34] Y. Zheng and C. Saavedra, “Active quasi-circulator MMIC using OTAs,” IEEE Microw. Wireless Compon. Lett, vol. 19, no. 4, pp.218–220, Apr. 2009.
    [35] S. B. Cohn, “Characteristic impedances of broadside-coupled strip transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 8, no. 6 , pp. 633-637, Nov. 1960.
    [36] 劉佳協, 60-GHz毫米波CMOS射頻前端RFICs及關鍵被動元件之研究設計,國立成功大學電腦與通信工程研究所碩士論文,民國九十六年。
    [37] C.-Y. Kim, J.-G. Kim, J. H. Oum, J. R. Yang, D.-K. Kim, J. H. Choi, S.-W. Kwon, S.-H. Jeon, J.-W. Park, and S. Hong, “Tx leakage cancellers for 24 GHz and 77 GHz vehicular radar applications,” IEEE Microw. Theory Tech. Symp. Dig., pp. 1402 – 1405, June, 2006.
    [37] C.-Y. Hsu, H.-R. Chuang, C.-Y. Chen,” Design of 60-GHz millimeter- wave bandpass filter using 0.18-μm CMOS technology,” IEEE Electron Device Lett., Vol. 29, No. 3, pp. 246-248, March 2008.
    [38] C.-Y. Hsu, C.-Y. Chen and H.-R. Chuang, “70-GHz folded loop dual- mode bandpass filter fabricated using 0.18-μm standard CMOS technology,” IEEE Microw. Wireless Compon. Lett. vol. 18, no.9, pp. 587-589, Sep. 2008
    [39] C.-K. C. Tzuang, H.-H. Wu, H.-S. Wu, and Johnsea Chen, “CMOS active bandpass filter using compacted synthetic quasi-TEM lines at C-Band,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, Dec. 2006.
    [40] K.-K. Huang, M.-J. Chiang, and C.-K. C. Tzuang, “A 3.3 mW K-band 0.18-μm 1P6M CMOS acitve bandpass filter using complementary current-reuse pair,” IEEE Microw. Wireless Compon. Lett. vol. 18, no.2, Feb. 2008.
    [41] Joseph S. Wong, “Microstrip tapped-line filter design,” IEEE Trans. Microw. Theory Tech., vol. 27, no. 1, Jan. 1979.
    [42] B. Razavi, “Design of analogy CMOS integrated circuits,” Mc Graw Hill.2001.
    [43] M. Ito, K. Maruhashi, S. Kishimoto, and K. Ohata “A 60 GHz-band coplanar MMIC active filter,” IEEE MTT-S Int. Microwave Symp. Dig., 2003.
    [44] K.-W. Fan, C.-C. Weng, Z.-M. Tasi, H. Wang, and S.-K. Jeng “K-Band MMIC active bans-pass filters,” IEEE Microw. Wireless Compon. Lett. vol. 15, no.1, Jun. 2005.
    [45] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filter, impedance-matching networks, and coupling structures, Norwood, MA: Artech House, 1980, ch.8.
    [46] D. M. Pozar, Microwave Engineering, 3rd edition, John Wiley & Sons, Inc., 2005.
    [47] P. Madsen, J.-H. Mikkelsen, J.-C. Lindof and T. Larsen, “An RF CMOS Q-enhance LC resonator,” in Proc. IEEE Norchip Conf., Nov. 2004.
    [48] C.-Y. Chang and T. Itoh, “Microwave active filters based on coupled negative resistance method,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 12, Decv. 1990.
    [49] M. Ito, K. Maruhashi, S. Kishimoto and K. Ohata, “60-GHz-Band coplanar MMIC active filter,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, Mar. 2004.
    [50] 林育聖, 60-GHz與26-/77-GHz 雙頻帶CMOS被動元件及主動濾波器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十八年。
    [51] Federal Communications Commission, “Amendment of parts 2, 15 and 97 of the commission’s rules to permit use of radio frequencies above 40 GHz for new radio applications ,” FCC 95-499, ET Docket No. 94-124, RM-8308, Dec. 15, 1995.
    [52] B. T. Henoch and P. Tamm, ”A 360o reflection-type diode phase modulator” IEEE Trans. Microw. Theory Tech., vol. 19, no. 1, pp.103-105, Jan. 1971.
    [53] Y. Yu, et al., “A 60 GHz digitally controlled phase shifter in CMOS,” in Proc. 34th Eur. Solid-State Circuits Conf. (ESSCIRC’ 08), Sep. 2008, pp. 250-253.
    [54] H.Zarei and D.Allstot, “A low-loss phase shifter MMIC in 180 nm CMOS for multiple-antenna receivers,” in Proc. Int. Solid-State Circuits Conf., Feb. 2004, pp. 392-393.
    [55] F. Ellinger, R. Vogt, and W. Bachtold, “Compact reflective-type phase shifter MMIC for C-band using a lumped-element coupler,”IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 913–917, May 2001.
    [56] F. Ellinger, R. Vogt, and W. Bachtold, “Ultracompact reflective type phase shifter MMIC at C-band with 360 phase-control range for smart antenna combining,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481–486, Apr. 2002.

    [57] C. S. Lin, S. F. Chang, C. C. Chang, H. Y. Shu, “Design of a reflection- type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Trans. Micro. Theory Tech., vol. 55, no. 9, pp. 1862-1868, Sep, 2007.
    [58] H.-K. Chiou, T.-Y. Yang, Y.-C. Hsu, S.-G. Lin and Y.-Z. Juang,” 15–60 GHz asymmetric broadside coupled balun in 0.18 lm CMOS technology,” Electron. Lett. , vol. 43, no. 19, Sep. 2007.
    [59] Biglarbegian, B., Nezhad-Ahmadi, M.R., Fakharzadeh, M., Safavi-Naeini, S., “Millimeter-wave reflective-type phase shifter in CMOS technology,” Electron. Lett. , Vol. 19, No. 9, pp. 560-562, Sep. 2009.
    [60] H. Zarei, C.T. Charles, D.J. Allstot, “Reflective-type phase shifters for multiple antenna transceivers, “IEEE Trans. Circuits and Systems, vol. 54, no. 8, pp. 1647-1656, Aug. 2007.
    [61] J. C. Wu, C. C. Chang, S. F. Chang and T. Y. Chin, “A 24-GHz full-360° CMOS reflection-type phase shifter MMIC with low loss-variation, “in RFIC Symp. Dig., Atlanta, GA, Jun. 2008, pp. 365-368.
    [62] J. Grajal, J. Gisermo, M. Mahfoudi, and F. Petz, “A1.4–2.7-Ghz analog MMIC vector modulator for a crossbar beam forming network,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 10, pp. 1705–1714, Oct. 1997.
    [63] P.-Y. Chen, T.-W. Huang, H. Wang, Y.-C. Wang, C.-H. Chen, and P.-C. Chao, “K-band HBT and HEMT monolithic active phase shifters using vector sum method,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1414–1424, May 2004.
    [64] H. Zarei, A. Ecker, J. Park, and D. Allstot, “A full-range all-pass variable phase shifter for multiple antenna receivers,” in Proc. Int. Symp. on Circuits and Systems, Kobe, Japan, May 2005, pp. 2100–2103.
    [65] F. Ellinger, H. Jackel, and W. Bachtold, “Varactor-loaded transmissionline phase shifter at C-band using lumped elements,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1135–1140, Apr. 2003.
    [66] C. Lu, A. Pham, and D. Livezey, “Development of multi-band phase shifters in 180-nm RF CMOS technology with active loss compensation,”IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 40–45, Jan. 2006.
    [67] F. Ellinger and W. Bachtold, “Novel principle for vector modulator based phase shifters operating with only one control voltage,” IEEE J. Solid-State Circuits, vol. 37, no. 10, pp. 1256–1259, Oct. 2002.
    [68] H. Hayashi, M. Muraguchi, Y. Umeda, and T. Enoki, “A high-Q broadband active inductor and its application to a low-loss analog phase shifter,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 12, pp. 2369–2374, Dec. 1996.
    [69] B. T. Henoch and P. Tamm,”A 360° reflection-type diode phase modulator” IEEE Trans. Microw. Theory Tech., vol.19, no.1, pp.103-105, Jan1971.
    [70] A. Bourdoux, J. Nsenga, W. V. Thillo, F. Horlin and L. V. d. Perre, “Air Interface and Physical Layer techniques for 60 GHz WPANs,” Communications and Vehicular Technology Symposium, pp. 1-6, Nov. 2006.
    [71] B. Sklar, Digital Communications: Fundamental and Applications, 2nd edition, Prentice Hall, pp. 249, 2001.
    [72] S. P. Voinigescu, M. Gordon, C. Lee, T. Yao, A. Mangan and K. Yau, “System-on-Chip Design Beyond 50 GHz,” System-on-Chip for Real-time Applications International Workshop, pp. 10-13, Jul. 2005.

    下載圖示 校內:2011-08-27公開
    校外:2011-08-27公開
    QR CODE