| 研究生: |
邱柏瑋 Chiu, Po-Wei |
|---|---|
| 論文名稱: |
原子力顯微鏡奈米壓痕探針之開發並應用於生物表面力學分析 Development of AFM nanoindentation probes for surface biomechanical analysis |
| 指導教授: |
劉浩志
Liu, Bernard Haochih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | AFM nanoindentation 、彈性模數 、奈米壓痕探針 、針尖角度 |
| 外文關鍵詞: | AFM nanoindentation, Elastic modulus, Nanoindentation probes, Tip angle |
| 相關次數: | 點閱:59 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
原子力顯微鏡系統操作的奈米壓痕試驗(AFM nanoindentation)為生物表面力學量測的主要方法之一,AFM nanoindentation除了能改善傳統壓痕試驗的尺度問題及應用侷限性之外,相較於生物體在化學分析上的過程,此方法大幅降低了樣品製備的時間與複雜性,並能搭配適合之接觸模型,獲得生物表面在機械性質與生理結構的關聯性,然而因尺度過小的探針在接觸樣品表面後的面積難以定義,故相關壓痕探針的開發成為許多研究團隊努力的方向。
有鑑於球形壓痕探針在製程上的困難及高成本,吾人使用了雙束型聚焦離子束顯微鏡 ( Dual-Beam Focused Ion Beam System, DB-FIB ),於探針尖端進行離子束誘導沉積 ( Ion Beam Induced Deposition, IBID ),以製作出圓柱形、橢圓形等針尖形狀的探針,並加入商業及本實驗室自製之膠體探針,透過原子力顯微鏡針對高分子樣品量測其力與壓深深度之曲線,以探討不同針形最合適之接觸模型,進而計算出彈性模數的結果。除此之外,吾人利用高分子樣品的分析結果,接續在變異鏈球菌、老鼠及人類皮膚癌細胞上進行實驗,觀察真實生物表面帶來的力學性質變化。
本實驗主要能分成三大部分,第一部份為使用不同探針對高分子均質材料進行 AFM nanoindentation,並先行以Hertz模型擬和聚二甲基矽氧烷 ( Polydimethylsiloxane, PDMS )的實驗結果,發現各探針整體彈性模數的數值明顯與壓深距離的變化呈現正相關,無法清楚決定真正的彈性模數,故從力曲線斜率變化判斷出Flat punch模型才能高度符合真實接觸情形,且以消除針尖尺度因子為目的,吾人修正出不同探針的計算模型,應用於 PMMA及PVA材料中,亦同樣能從實驗結果觀察出差異。第二部份,在生物體的量測中,可發現利用修正模型計算出變異鏈球菌的彈性模數會隨著壓深距離的加大而下降,推測是由於菌體表面的細胞壁組織緊密程度與針尖形狀的交互作用所導致,而在小鼠及人類黑色素瘤細胞上,則發現彈性模數在一定壓深距離後,彈性模數趨於穩定,推論是細胞外間質( Extracellular matrix , ECM )的含量將會影響到細胞受力的變形量,並說明了ECM在細胞表面的密度高低是有可能影響到兩種細胞在彈性模數上的差異。最後,為了從不同針形得出的結果中,決定出真正的彈性模數,吾人以針尖角度的差別對彈性模數作圖並嘗試建立出不同探針適用之應用流程,發現角度越低的針形在接觸當下,樣品所受應力只能集中於針尖最前端,若樣品有強烈的黏彈性造成Sink-in effect,更容易導致彈性模數值過度預估,故須衡量黏彈性的現象並搭配適合角度的探針所得之彈性模數才較合理。
本實驗成功以AFM nanoindentation 量測出生物表面的力學性質,並以適當的模型計算出合理的彈性模數,而在未來的研究方向,也希望能以微機電系統(MEMS) 方向進行導電奈米壓痕探針的大量製備,探討生物表面在電性質方面的現象,以期建立出更完整的生物資料庫,應用於臨床醫療的發展。
In view of the problematic process and high cost of the spherical nanoindentation probes , we used a Dual-Beam Focused Ion Beam System (DB-FIB) to make a cylindrical probe, oval probe, and other probe with different shapes, and measured the surface mechanical properties of the polymer homogeneous material and the real biological sample through AFM nanoindentation compared with the commercial and self-made colloidal probes . From the results, we inferred that the lower the tip angle was, the stress could only be concentrated on the end of the tip. At this time, if the sample had strong viscoelasticity which would cause the Sink-in effect easily, it was easy to result in the miscalculation of the elastic modulus. Therefore, in order to obtain a more reasonable elastic modulus, it was necessary to evaluate the degree of viscoelasticity effect and matched the suitable tip angle.
[1] Bruker, "PeakForce-QNM Advanced Applications Training " 2014.
[2] Indiana University. General Introduction To Atomic Force Microscopy. Available: http://www.iupui.edu/~bbml/afmintro.html
[3] M. Radmacher, "Measuring the elastic properties of biological samples with the AFM," IEEE Engineering in Medicine and Biology Magazine, vol. 16, no. 2, pp. 47-57, 1997.
[4] G. Sagvolden, I. Giaever, E. Pettersen, and J. Feder, "Cell adhesion force microscopy," Proceedings of the National Academy of Sciences, vol. 96, no. 2, pp. 471-476, 1999.
[5] M. Benoit, D. Gabriel, G. Gerisch, and H. E. Gaub, "Discrete interactions in cell adhesion measured by single-molecule force spectroscopy," Nature cell biology, vol. 2, no. 6, pp. 313-317, 2000.
[6] V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, and G.-y. Liu, "Cell mechanics using atomic force microscopy-based single-cell compression," Langmuir, vol. 22, no. 19, pp. 8151-8155, 2006.
[7] M. K. Yapici and J. Zou, "Microfabrication of colloidal scanning probes with controllable tip radii of curvature," Journal of Micromechanics and Microengineering, vol. 19, no. 10, p. 105021, 2009.
[8] European Centre of Ecotoxicology and Toxicology of Chemicals, "Linear polydimethylsiloxanes , Joint Assessment of Commodity Chemicals No. 26," European Centre of Ecotoxicology and Toxicology of Chemicals, 1994.
[9] J. E. Mark, H. R. Allcock, and R. West, Inorganic polymers. Oxford University Press, 2005.
[10] J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," Journal of micromechanics and microengineering, vol. 7, no. 3, p. 145, 1997.
[11] Z. Wang, Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques. University of South Florida, 2011.
[12] C. Ishiyama, Y. Yamamoto, and Y. Higo, "Effects of Humidity History on the Tensile Deformation Behaviour of Poly (methyl–methacrylate)(PMMA) Films," MRS Online Proceedings Library Archive, vol. 875, 2005.
[13] A.-Y. Jee and M. Lee, "Comparative analysis on the nanoindentation of polymers using atomic force microscopy," Polymer Testing, vol. 29, no. 1, pp. 95-99, 2010.
[14] M. L. Hallensleben, R. Fuss, and F. Mummy, "Polyvinyl compounds, others," Ullmann's Encyclopedia of Industrial Chemistry, 2000.
[15] J. Fromageau, E. Brusseau, D. Vray, G. Gimenez, and P. Delachartre, "Characterization of PVA cryogel for intravascular ultrasound elasticity imaging," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 50, no. 10, pp. 1318-1324, 2003.
[16] D. Lin, E. Dimitriadis, and F. Horkay, "Elasticity of rubber-like materials measured by AFM nanoindentation," Express Polym Lett, vol. 1, no. 9, pp. 576-584, 2007.
[17] B. Das, K. E. Prasad, U. Ramamurty, and C. Rao, "Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene," Nanotechnology, vol. 20, no. 12, p. 125705, 2009.
[18] S. E. Cross, J. Kreth, L. Zhu, R. Sullivan, W. Shi, F. Qi, and J. K. Gimzewski, "Nanomechanical properties of glucans and associated cell-surface adhesion of Streptococcus mutans probed by atomic force microscopy under in situ conditions," Microbiology, vol. 153, no. 9, pp. 3124-3132, 2007.
[19] N. Beyth, R. Bahir, S. Matalon, A. J. Domb, and E. I. Weiss, "Streptococcus mutans biofilm changes surface-topography of resin composites," dental materials, vol. 24, no. 6, pp. 732-736, 2008.
[20] American Type Culture Collection. (2002). B16-F10 Cell Micorgraph. Available: https://www.atcc.org/Products/All/CRL-6475.aspx#documentation
[21] T. Watanabe, H. Kuramochi, A. Takahashi, K. Imai, N. Katsuta, T. Nakayama, H. Fujiki, and M. Suganuma, "Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (−)-epigallocatechin gallate-treated cells," Journal of cancer research and clinical oncology, vol. 138, no. 5, pp. 859-866, 2012.
[22] M.-L. Kung, C.-W. Hsieh, M.-H. Tai, C.-H. Weng, D.-C. Wu, W.-J. Wu, B.-W. Yeh, S.-L. Hsieh, C.-H. Kuo, and H.-S. Hung, "Nanoscale characterization illustrates the cisplatin-mediated biomechanical changes of B16-F10 melanoma cells," Physical Chemistry Chemical Physics, vol. 18, no. 10, pp. 7124-7131, 2016.
[23] American Type Culture Collection. (2002). A375 Cell Micrograph. Available: https://www.atcc.org/Products/All/CRL-1619.aspx
[24] T. Ludwig, R. Kirmse, K. Poole, and U. S. Schwarz, "Probing cellular microenvironments and tissue remodeling by atomic force microscopy," Pflügers Archiv-European Journal of Physiology, vol. 456, no. 1, pp. 29-49, 2008.
[25] K. Pogoda, J. Jaczewska, J. Wiltowska-Zuber, O. Klymenko, K. Zuber, M. Fornal, and M. Lekka, "Depth-sensing analysis of cytoskeleton organization based on AFM data," European Biophysics Journal, vol. 41, no. 1, pp. 79-87, 2012.
[26] N. Tao, S. Lindsay, and S. Lees, "Measuring the microelastic properties of biological material," Biophysical journal, vol. 63, no. 4, pp. 1165-1169, 1992.
[27] Q. Li, G. Lee, C. Ong, and C. Lim, "AFM indentation study of breast cancer cells," Biochemical and biophysical research communications, vol. 374, no. 4, pp. 609-613, 2008.
[28] B. A. Smith, B. Tolloczko, J. G. Martin, and P. Grütter, "Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist," Biophysical journal, vol. 88, no. 4, pp. 2994-3007, 2005.
[29] W. A. Ducker, T. J. Senden, and R. M. Pashley, "Direct measurement of colloidal forces using an atomic force microscope," nature, vol. 353, no. 6341, pp. 239-241, 1991.
[30] T. K. Berdyyeva, C. D. Woodworth, and I. Sokolov, "Human epithelial cells increase their rigidity with ageing in vitro: direct measurements," Physics in Medicine and Biology, vol. 50, no. 1, p. 81, 2004.
[31] G. Hüttl, D. Beyer, and E. Müller, "Investigation of electrical double layers on SiO2 surfaces by means of force vs. distance measurements," Surface and interface analysis, vol. 25, no. 7‐8, pp. 543-547, 1997.
[32] G. Pucci, M. De Santo, G. Carbone, and R. Barberi, "A novel method to prepare probes for atomic force spectroscopy," Dig. J. Nanomat. Biostr., vol. 1, 2006.
[33] H. Xu, G.-h. Xu, and Y. An, "A novel colloid probe preparation method based on chemical etching technique," Journal of Zhejiang University-Science B, vol. 7, no. 4, pp. 304-309, 2006.
[34] H. Hertz, "Über die Berührung fester elastischer Körper," Journal für die reine und angewandte Mathematik, vol. 92, pp. 156-171, 1882.
[35] I. N. Sneddon, "The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile," International journal of engineering science, vol. 3, no. 1, pp. 47-57, 1965.
[36] M. Bonilla, J. Stokes, M. Gidley, and G. Yakubov, "Interpreting atomic force microscopy nanoindentation of hierarchical biological materials using multi-regime analysis," Soft Matter, vol. 11, no. 7, pp. 1281-1292, 2015.
[37] 林虹君, "原子力顯微鏡量測多孔性牙支架材料及細菌機械性質之技術建立," Master, NCKU, MSE, 2017.
[38] S. Reyntjens and R. Puers, "A review of focused ion beam applications in microsystem technology," Journal of micromechanics and microengineering, vol. 11, no. 4, p. 287, 2001.
[39] I. Sokolov, M. E. Dokukin, and N. V. Guz, "Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments," Methods, vol. 60, no. 2, pp. 202-213, 2013.
[40] I. Utke, P. Hoffmann, and J. Melngailis, "Gas-assisted focused electron beam and ion beam processing and fabrication," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 26, no. 4, pp. 1197-1276, 2008.
[41] Y. H. Kahng, J. Choi, K. Jeong, B. C. Park, D.-H. Kim, J. Lyou, J.-J. Lee, H. Lee, T. Lee, and S. J. Ahn, "Fabrication of ball-shaped atomic force microscope tips by ion-beam-induced deposition of platinum on multiwall carbon nanotubes," Ultramicroscopy, vol. 110, no. 1, pp. 82-88, 2009.
[42] J. D. Wnuk, J. M. Gorham, S. G. Rosenberg, W. F. van Dorp, T. E. Madey, C. W. Hagen, and D. H. Fairbrother, "Electron induced surface reactions of the organometallic precursor trimethyl (methylcyclopentadienyl) platinum (IV)," The Journal of Physical Chemistry C, vol. 113, no. 6, pp. 2487-2496, 2009.
[43] S. A. Edwards, W. A. Ducker, and J. E. Sader, "Influence of atomic force microscope cantilever tilt and induced torque on force measurements," Journal of Applied Physics, vol. 103, no. 6, p. 064513, 2008.
[44] G. Smolyakov, C. Formosa-Dague, C. Severac, R. Duval, and E. Dague, "High speed indentation measures by FV, QI and QNM introduce a new understanding of bionanomechanical experiments," Micron, vol. 85, pp. 8-14, 2016.
[45] L. Zhao, D. Schaefer, H. Xu, S. J. Modi, W. R. LaCourse, and M. R. Marten, "Elastic properties of the cell wall of Aspergillus nidulans studied with atomic force microscopy," Biotechnology progress, vol. 21, no. 1, pp. 292-299, 2005.
[46] L. Calabri, N. Pugno, A. Rota, D. Marchetto, and S. Valeri, "Nanoindentation shape effect: experiments, simulations and modelling," Journal of Physics: Condensed Matter, vol. 19, no. 39, p. 395002, 2007.
[47] B. R. Brückner, H. Nöding, and A. Janshoff, "Viscoelastic properties of confluent MDCK II cells obtained from force cycle experiments," Biophysical Journal, vol. 112, no. 4, pp. 724-735, 2017.
[48] J. Rother, H. Nöding, I. Mey, and A. Janshoff, "Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines," Open biology, vol. 4, no. 5, p. 140046, 2014.
[49] A. Cense, E. Peeters, B. Gottenbos, F. Baaijens, A. Nuijs, and M. Van Dongen, "Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device," Journal of microbiological methods, vol. 67, no. 3, pp. 463-472, 2006.
[50] K. Hayashi and M. Iwata, "Stiffness of cancer cells measured with an AFM indentation method," Journal of the mechanical behavior of biomedical materials, vol. 49, pp. 105-111, 2015.
[51] F. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, and D. Navajas, "Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips," Physical Review E, vol. 72, no. 2, p. 021914, 2005.
[52] A. Cartagena and A. Raman, "Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods," Biophysical journal, vol. 106, no. 5, pp. 1033-1043, 2014.
[53] D. Wang, X.-B. Liang, Y.-H. Liu, S. Fujinami, T. Nishi, and K. Nakajima, "Characterization of surface viscoelasticity and energy dissipation in a polymer film by atomic force microscopy," Macromolecules, vol. 44, no. 21, pp. 8693-8697, 2011.