簡易檢索 / 詳目顯示

研究生: 許麗文
Hsu, Li-Wen
論文名稱: 探討核蛋白-組蛋白H1在移植及再生免疫學之轉譯研究
Translational Research ~ The Role of Nuclear Protein-Histone H1 in Transplantation and Regeneration Immunobiology
指導教授: 陳淑慧
Chen, Shu-Hui
共同指導教授: 後藤茂
Shigeru Goto
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 110
中文關鍵詞: 核蛋白組蛋白H1抗體耐受性同位肝臟移植抗原呈現細胞樹突細胞免疫調控脂肪幹細胞
外文關鍵詞: nuclear protein, histone H1, antibody, tolerance, orthotopic liver transplantation, antigen-presenting cells, dendritic cells, immune regulation, adipose-derived stem cells
相關次數: 點閱:189下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 器官移植後的排斥現象是無法避免的,而且必須長期服用FK506以及CsA等免疫抑制劑。但服用這類的免疫抑制劑通常會產生嚴重性的副作用。然而,任意終止免疫抑制劑的治療可能產生移植排斥作用而導致器官衰竭。所以發展安全且更有效用的免疫抑制劑可以更進一步改善器官移植後的存活率。
    跟其他器官移植相比較,同種異體器官移植後具有耐受性卻不產生排斥現象幾乎只發生在臨床及實驗動物模式的肝臟移植中。已有報告指出在大鼠同位肝臟移植模式中,受肝者術後的血清具有免疫抑制的效果,並且可以克服排斥的產生。然而在受肝者術後前期的血清中,這些具有免疫抑制功能的分子之界定仍舊未明。在我們先前的研究裡,我們證明了同種異體肝臟移植耐受性的產生是和肝臟移植後血清中具免疫抑制活性的抗組蛋白H1抗體之被誘導生成有關聯。我曾經研究過組蛋白H1和抗組蛋白H1抗體對各種細胞的免疫調控作用,特別是對T細胞,ASCs及DCs之間的細胞作用加以探討。因此,本研究主題的具體目標將探討組蛋白H1在移植及再生免疫學上的角色。
    首先,我將從DC,T細胞,LAK細胞以及NK細胞而來探討組蛋白H1的免疫抑制活性。在ConA blast實驗中加入抗組蛋白H1抗體,不但不會對細胞產生毒性,而且可以抑制細胞増生,並會增加CD4+CD25+ T細胞比例。當DC接受抗組蛋白H1抗體的作用時,會降低CD80/CD86,IL-1β以及 IL-6的表現。另外,加入抗組蛋白H1抗體到LAK細胞一起培養時,會減少NKR-P1的比例以及降低iNOS,IL-2和IFN-γ的表現。LAK 細胞和NK細胞接受抗組蛋白H1抗體作用後,其毒殺效果也會降低。我們發現當封鎖組蛋白H1的表現時,DC會傾向耐受性的狀態並且降低LAK細胞和NK細胞的毒殺作用,而且會誘導CD4+CD25+Foxp3 T細胞的產生。我們也證實存在細胞質與細胞培養液中的組蛋白H1,可以活化DC的反應。當組蛋白H1被封鎖後會降低DC中訊息傳遞的功能以及MAPKs的表現,並且抑制DC的活性。換言之,DC接受組蛋白H1刺激後,會增加MHC II、CD80及CD86的表現,而且會增加MAPKs的表現。這些結果顯示要促使DC成熟及活化,須組蛋白H1從細胞核轉移到細胞質並且釋出。
    近期動物研究顯示幹細胞由骨髓遷徙到肝臟移植片扮演著調控免疫耐受及再生的重要角色。另外,已有研究指出核蛋白會增進幹細胞的遷徙及後續的再生能力。因此,我一直在探討組蛋白H1 對幹細胞的作用。我們發現移植耐受性模式的肝臟中有組蛋白H1的大量表現,相反的,移植排斥模式的肝臟中並未有組蛋白H1的表現。因此,我將先從體外模式研究來證明組蛋白H1對ASCs免疫調節及遷徙能力的影響。由我們研究的結果發現組蛋白H1可以誘導ASCs免疫調節抑制及分化。接下來,將探討肝臟移植後組蛋白H1對於肝臟再生的影響。由這些結果顯示抗組蛋白H1抗體可以發展成有效的免疫抑制藥物;另外,組蛋白H1也可以應用在ASCs組織工程方面,成為有潛能的療法。

    In solid organ transplantation, rejection is inevitable and must be treated with long-term immunosuppressive agents, such as tacrolimus (FK506) and cyclosporine A (CsA), which cause deleterious side effects. However, it is unethical to randomly terminate immunosuppressive therapy, which leads to allograft failure. The development of safer and more effective immunosuppressants would result in further improvement of organ transplantation.
    Allograft tolerance can be observed almost exclusively in clinical and experimental liver transplantation compared to other organ transplantation. In a rat model of orthotopic liver transplantation (OLT), recipient serum after OLT (post-OLT serum) has been reported to have immunosuppressive activity and contribute to overcome allograft rejection. However, the molecular identities of immunosuppressive factors, which are in the early stage of post-OLT, remain elusive. We previously demonstrated that liver allograft tolerance is associated with the immunosuppressive activity of anti-histone H1 antibody (Ab) induced in the serum of liver transplantation. I have been researching the effect of histone H1 and its Ab on individual immune responsible cells such as DCs, T cells, NK cells and adipose-derived stem cells (ASCs). Especially, cross-talk among T cells, ASCs and DCs is currently being paid attention. Therefore, the specific aims of this study focus here upon the significance of histone H1 and its Ab in transplantation immunology and regeneration immunobiology.
    Firstly, the mechanisms underlying the immunosuppressive activity by anti-histone H1 Ab was explored in immune responsible cells including DCs, T-cells, LAK cells, and NK cells. The addition of anti-histone H1 Ab to Concanavalin A (ConA) blast inhibited the proliferation of 5-(6)-carboxy-fluorescein succinimidyl ester (CFSE)-labeled lymphocytes without toxicity but increased the population of CD4+CD25+ T-cells. DCs treated with anti-histone H1 Ab expressed lower levels of CD80/CD86, interleukin (IL)-1β, and IL-6. The addition of anti-histone H1 Ab to LAK cells culture decreased the percentages of NKR-P1 populations and down-regulated levels of inducible nitric oxide synthase (iNOS), IL-2, and interferon (IFN)-γ in RT-PCR. The cytotoxicity of LAK cells and NK cells was lower after treated with anti-histone H1 Ab compared to treat with control IgG. We found that the blockade of histone H1 modulated DCs toward tolerogenic status, decreased the cytotoxicity of LAK and NK cells, and induced CD4+CD25+ T-cells. We also focus upon the significance of histone H1 on DCs in terms of the intracellular signalling pathway of DCs. Our immunostaining and immunoblot studies demonstrated that histone H1 was detected in cytoplasm and culture supernatants upon the activation of DCs. Histone H1 blockage by anti-histone H1 Ab down-regulated the intracellular activation of mitogen-activated protein kinases (MAPKs) (p38) and IkBα of DCs, and inhibited DC activity in the proliferation of CD4+ T cells. On the other hand, the addition of histone H1 without endotoxin stimulation up-regulated major histocompatibility complex class (MHC) II, the CD80 and CD86 surface markers of DCs and the activation of MAPKs (p38 and extracellular-regulated kinase (ERK) 1/2) and IkBα. These results suggest that the translocation of histone H1 from nuclei to cytoplasm and the release of their own histone H1 are necessary for the maturation of DCs and the activation for T lymphocytes.
    Recent experimental studies suggest that stem cells from bone marrow to liver allograft play an important role of immunological tolerance and regeneration in the donor graft. Additionally, nuclear proteins have been reported to enhance migration of stem cells and subsequent regeneration. Therefore, I have been investigating the effect of histone H1 on stem cells. In the experimental setting of liver transplantation, the expression of histone H1 in donor graft can be observed exclusively in tolerogeneic OLT while no hepatic expression of histone H1 was observed in donor grafts of rejector OLT. Therefore, I firstly performed in vitro studies demonstrating the effect of histone H1 on immunosuppression potential and migration ability of ASCs. Our in vitro studies showed that histone H1 does not alter immunological status but that histone H1 enhanced wound healing and migration ability accompanied with increased IL-6 expression. In the present study, the role of histone H1 on post-transplant liver regeneration is also discussed. In conclusion, these results suggest that the use of anti-histone H1 Abs might be a useful strategy for the development of a form of immunosuppression and histone H1 may be useful for induction of ASCs in tissue engineering and future potential ASCs therapies for transplantation.

    Table of Contents Abstract I 中文摘要 IV 致 謝 VI Table of Contents VII List of Tables IX List of Figures X Abbreviations XII Chapter 1 1 1.1 Liver transplantation 2 1.2 Donor-specific tolerance 2 1.3 Classification and immune mechanisms of allograft rejection 3 1.4 Previous reports regarding the immunological mechanisms of allograft rejection and tolerance 3 1.5 The immunosuppressive factors in post orthotopic liver transplantation (OLT) serum 6 1.6 Histone H1 Abs are induced in early tolerogeneic OLT model and clinical drug free patients 7 1.7 Immunity for nuclear proteins in liver transplantation 8 1.8 Mesenchymal Stem Cells and Liver Allograft Tolerance 9 1.9 Nuclear proteins, transdifferentiation and regeneration 10 Chapter 2 26 2.1 Materials and Methods 27 2.2 The effects of anti-histone H1 antibody on immune cells response 27 2.3 To explore the role of nuclear protein-histone H1 on signaling pathways for the maturation of DCs 32 2.4 The Role of Nuclear Protein-Histone H1 in Regeneration Immunobiology 35 2.5 Statistical analysis 38 Chapter 3 40 3.1 The anti-histone H1 antibody suppressed immune cells response for rejection reaction 41 3.2 The nuclear protein-histone H1 play an important role on the dendritic cells maturation 43 3.3 The Nuclear Protein-Histone H1 regulated the immunosuppressive activity and differentiation ability of ASCs 45 Chapter 4 Disscussion 47 Chapter 5 Conclusion and perspective 80 Overview of this study 81 Perspective 83 References 87

    1 S. S. Sundaram, H. Melin-Aldana, K. Neighbors, and E. M. Alonso (2006), "Histologic characteristics of late cellular rejection, significance of centrilobular injury, and long-term outcome in pediatric liver transplant recipients", Liver Transpl, 12 (1) pp.58-64.
    2 L. R. Fisher, K. S. Henley, and M. R. Lucey (1995), "Acute cellular rejection after liver transplantation: variability, morbidity, and mortality", Liver Transpl Surg, 1 (1) pp.10-15.
    3 M. M. Dollinger, S. E. Howie, J. N. Plevris, A. M. Graham, P. C. Hayes, and D. J. Harrison (1998), "Intrahepatic proliferation of 'naive' and 'memory' T cells during liver allograft rejection: primary immune response within the allograft", FASEB J, 12 (11) pp.939-947.
    4 M. D. Denton, C. C. Magee, and M. H. Sayegh (1999), "Immunosuppressive strategies in transplantation", Lancet, 353 (9158) pp.1083-1091.
    5 J. F. Gummert, T. Ikonen, and R. E. Morris (1999), "Newer immunosuppressive drugs: a review", J Am Soc Nephrol, 10 (6) pp.1366-1380.
    6 R. Y. Calne, K. Rolles, D. J. White, S. Thiru, D. B. Evans, P. Mcmaster, D. C. Dunn, G. N. Craddock, R. G. Henderson, S. Aziz, and P. Lewis (1979), "Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers", Lancet, 2 (8151) pp.1033-1036.
    7 H. Nizze, M. J. Mihatsch, H. U. Zollinger, C. Brocheriou, J. M. Gokel, K. Henry, J. P. Sloane, and P. G. Stovin (1988), "Cyclosporine-associated nephropathy in patients with heart and bone marrow transplants", Clin Nephrol, 30 (5) pp.248-260.
    8 S. Todo, N. Murase, Y. Ueda, L. Podesta, P. Chapchap, D. Kahn, K. Okuda, O. Imventarza, A. Casavilla, J. Demetris, and Et Al. (1988), "Effect of FK506 in experimental organ transplantation", Transplant Proc, 20 (1 Suppl 1) pp.215-219.
    9 T. E. Starzl, S. Todo, J. Fung, A. J. Demetris, R. Venkataramman, and A. Jain (1989), "FK 506 for liver, kidney, and pancreas transplantation", Lancet, 2 (8670) pp.1000-1004.
    10 R. Y. Calne, D. S. Collier, S. Lim, S. G. Pollard, A. Samaan, D. J. White, and S. Thiru (1989), "Rapamycin for immunosuppression in organ allografting", Lancet, 2 (8656) pp.227.
    11 A. Mitsui and S. Suzuki (1969), "Immunosuppressive effect of mycophenolic acid", J Antibiot (Tokyo), 22 (8) pp.358-363.
    12 H. W. Sollinger (1995), "Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. U.S. Renal Transplant Mycophenolate Mofetil Study Group", Transplantation, 60 (3) pp.225-232.
    13 J. R. Jeffery, A. R. Downs, C. Lye, and E. Ramsey (1979), "Immunosuppression with azathioprine, prednisone, and cyclophosphamide", Transplantation, 28 (1) pp.10-12.
    14 R. E. Morris, X. Huang, C. R. Gregory, M. E. Billingham, R. Rowan, R. Shorthouse, and G. J. Berry (1995), "Studies in experimental models of chronic rejection: use of rapamycin (sirolimus) and isoxazole derivatives (leflunomide and its analogue) for the suppression of graft vascular disease and obliterative bronchiolitis", Transplant Proc, 27 (3) pp.2068-2069.
    15 F. Thomas, R. Berry, G. Mendez-Picon, J. Thomas, R. R. Lower, and H. M. Lee (1978), "In vivo - in vitro correlates of antithymocyte globulin (ATG) immunosuppression in the human", Proc Clin Dial Transplant Forum, 8 pp.56-61.
    16 L. J. Swinnen, M. R. Costanzo-Nordin, S. G. Fisher, E. J. O'sullivan, M. R. Johnson, A. L. Heroux, G. J. Dizikes, R. Pifarre, and R. I. Fisher (1990), "Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiac-transplant recipients", N Engl J Med, 323 (25) pp.1723-1728.
    17 I. Matl (2000), "[Newer immunosuppressive agents and their place in current practice]", Cas Lek Cesk, 139 (15) pp.460-463.
    18 K. A. Havlin, J. G. Kuhn, J. Koeller, D. H. Boldt, J. B. Craig, T. D. Brown, G. R. Weiss, J. Cagnola, J. Phillips, G. Harman, and Et Al. (1995), "Deoxyspergualin: phase I clinical, immunologic and pharmacokinetic study", Anticancer Drugs, 6 (2) pp.229-236.
    19 R. I. Scheinman, P. C. Cogswell, A. K. Lofquist, and A. S. Baldwin, Jr. (1995), "Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids", Science, 270 (5234) pp.283-286.
    20 F. J. Dumont (2005), "Fingolimod. Mitsubishi Pharma/Novartis", IDrugs, 8 (3) pp.236-253.
    21 T. F. Schorn, V. Kliem, M. Bojanovski, D. Bojanovski, H. Repp, H. Bunzendahl, and U. Frei (1991), "Impact of long-term immunosuppression with cyclosporin A on serum lipids in stable renal transplant recipients", Transpl Int, 4 (2) pp.92-95.
    22 P. Fioretto, M. W. Steffes, M. J. Mihatsch, E. H. Strom, D. E. Sutherland, and M. Mauer (1995), "Cyclosporine associated lesions in native kidneys of diabetic pancreas transplant recipients", Kidney Int, 48 (2) pp.489-495.
    23 W. M. Bennett, A. Demattos, M. M. Meyer, T. Andoh, and J. M. Barry (1996), "Chronic cyclosporine nephropathy: the Achilles' heel of immunosuppressive therapy", Kidney Int, 50 (4) pp.1089-1100.
    24 D. J. Goldstein, N. Zuech, V. Sehgal, A. D. Weinberg, R. Drusin, and D. Cohen (1997), "Cyclosporine-associated end-stage nephropathy after cardiac transplantation: incidence and progression", Transplantation, 63 (5) pp.664-668.
    25 K. P. Platz, A. R. Mueller, G. Blumhardt, S. Bachmann, W. O. Bechstein, A. Kahl, and P. Neuhaus (1994), "Nephrotoxicity following orthotopic liver transplantation. A comparison between cyclosporine and FK506", Transplantation, 58 (2) pp.170-178.
    26 L. W. Miller (2002), "Cardiovascular toxicities of immunosuppressive agents", Am J Transplant, 2 (9) pp.807-818.
    27 M. Hojo, T. Morimoto, M. Maluccio, T. Asano, K. Morimoto, M. Lagman, T. Shimbo, and M. Suthanthiran (1999), "Cyclosporine induces cancer progression by a cell-autonomous mechanism", Nature, 397 (6719) pp.530-534.
    28 R. Y. Calne, R. A. Sells, J. R. Pena, D. R. Davis, P. R. Millard, B. M. Herbertson, R. M. Binns, and D. A. Davies (1969), "Induction of immunological tolerance by porcine liver allografts", Nature, 223 (5205) pp.472-476.
    29 I. N. Crispe (2003), "Hepatic T cells and liver tolerance", Nat Rev Immunol, 3 (1) pp.51-62.
    30 M. Knoop, U. Neumann, and P. Neuhaus (1995), "[Immunologic tolerance after experimental liver transplantation]", Langenbecks Arch Chir, 380 (5) pp.281-287.
    31 N. Kamada, H. S. Davies, and B. Roser (1981), "Reversal of transplantation immunity by liver grafting", Nature, 292 (5826) pp.840-842.
    32 N. Kamada, G. Brons, and H. S. Davies (1980), "Fully allogeneic liver grafting in rats induces a state of systemic nonreactivity to donor transplantation antigens", Transplantation, 29 (5) pp.429-431.
    33 N. Kamada, H. S. Davies, D. Wight, L. Culank, and B. Roser (1983), "Liver transplantation in the rat. Biochemical and histological evidence of complete tolerance induction in non-rejector strains", Transplantation, 35 (4) pp.304-311.
    34 N. Kamada and D. G. Wight (1984), "Antigen-specific immunosuppression induced by liver transplantation in the rat", Transplantation, 38 (3) pp.217-221.
    35 N. Kamada, H. S. Davies, and B. J. Roser (1981), "Fully allogeneic liver grafting and the induction of donor-specific unreactivity", Transplant Proc, 13 (1 Pt 2) pp.837-841.
    36 N. Kamada (1996), "The liver as an immunosuppressive organ", Book "Transplantation Biology", Chapter 44 pp.531-539.
    37 Ling Lu, Jianhua Rao, Guoqiang Li, Xiaofeng Qian, Beicheng Sun, and Xuehao Wang, " Immunology of Liver Transplantation", Book "Liver Transplantation-Basic Issues", Chapter 4 pp.75-94.
    38 I. Stefanova, J. R. Dorfman, M. Tsukamoto, and R. N. Germain (2003), "On the role of self-recognition in T cell responses to foreign antigen", Immunol Rev, 191 pp.97-106.
    39 B. Watschinger (1995), "How T cells recognize alloantigen: evidence for two pathways of allorecognition", Nephrol Dial Transplant, 10 (9) pp.1556-1558.
    40 B. Afzali, G. Lombardi, and R. I. Lechler (2008), "Pathways of major histocompatibility complex allorecognition", Curr Opin Organ Transplant, 13 (4) pp.438-444.
    41 A. Seetharam, V. Tiriveedhi, and T. Mohanakumar (2010), "Alloimmunity and autoimmunity in chronic rejection", Curr Opin Organ Transplant, 15 (4) pp.531-536.
    42 P. Stastny, S. Ring, C. Lu, J. Arenas, M. Han, and B. Lavingia (2009), "Role of immunoglobulin (Ig)-G and IgM antibodies against donor human leukocyte antigens in organ transplant recipients", Hum Immunol, 70 (8) pp.600-604.
    43 O. Nadazdin, S. Boskovic, S. L. Wee, H. Sogawa, I. Koyama, R. B. Colvin, R. N. Smith, G. Tocco, D. H. O'connor, J. A. Karl, J. C. Madsen, D. H. Sachs, T. Kawai, A. B. Cosimi, and G. Benichou (2011), "Contributions of direct and indirect alloresponses to chronic rejection of kidney allografts in nonhuman primates", J Immunol, 187 (9) pp.4589-4597.
    44 A. P. Chidgey, D. Layton, A. Trounson, and R. L. Boyd (2008), "Tolerance strategies for stem-cell-based therapies", Nature, 453 (7193) pp.330-337.
    45 C. Taflin, D. Charron, D. Glotz, and N. Mooney (2011), "Immunological function of the endothelial cell within the setting of organ transplantation", Immunol Lett, 139 (1-2) pp.1-6.
    46 A. Hutloff, A. M. Dittrich, K. C. Beier, B. Eljaschewitsch, R. Kraft, I. Anagnostopoulos, and R. A. Kroczek (1999), "ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28", Nature, 397 (6716) pp.263-266.
    47 H. Reiser and M. J. Stadecker (1996), "Costimulatory B7 molecules in the pathogenesis of infectious and autoimmune diseases", N Engl J Med, 335 (18) pp.1369-1377.
    48 M. H. Sayegh and L. A. Turka (1998), "The role of T-cell costimulatory activation pathways in transplant rejection", N Engl J Med, 338 (25) pp.1813-1821.
    49 A. D. Kirk, D. M. Harlan, N. N. Armstrong, T. A. Davis, Y. Dong, G. S. Gray, X. Hong, D. Thomas, J. H. Fechner, Jr., and S. J. Knechtle (1997), "CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates", Proc Natl Acad Sci U S A, 94 (16) pp.8789-8794.
    50 X. C. Li, Y. Li, I. Dodge, A. D. Wells, X. X. Zheng, L. A. Turka, and T. B. Strom (1999), "Induction of allograft tolerance in the absence of Fas-mediated apoptosis", J Immunol, 163 (5) pp.2500-2507.
    51 J. D. Davies, G. Martin, J. Phillips, S. E. Marshall, S. P. Cobbold, and H. Waldmann (1996), "T cell regulation in adult transplantation tolerance", J Immunol, 157 (2) pp.529-533.
    52 H. Waldmann, L. Graca, S. Cobbold, E. Adams, M. Tone, and Y. Tone (2004), "Regulatory T cells and organ transplantation", Semin Immunol, 16 (2) pp.119-126.
    53 S. P. Cobbold, E. Adams, L. Graca, S. Daley, S. Yates, A. Paterson, N. J. Robertson, K. F. Nolan, P. J. Fairchild, and H. Waldmann (2006), "Immune privilege induced by regulatory T cells in transplantation tolerance", Immunol Rev, 213 pp.239-255.
    54 A. W. Thomson and L. Lu (1999), "Are dendritic cells the key to liver transplant tolerance?", Immunol Today, 20 (1) pp.27-32.
    55 J. Stein-Streilein and J. W. Streilein (2002), "Anterior chamber associated immune deviation (ACAID): regulation, biological relevance, and implications for therapy", Int Rev Immunol, 21 (2-3) pp.123-152.
    56 Y. Brewer, A. Palmer, D. Taube, K. Welsh, M. Bewick, C. Bindon, G. Hale, H. Waldmann, F. Dische, V. Parsons, and Et Al. (1989), "Effect of graft perfusion with two CD45 monoclonal antibodies on incidence of kidney allograft rejection", Lancet, 2 (8669) pp.935-937.
    57 F. D. Shi and L. Van Kaer (2006), "Reciprocal regulation between natural killer cells and autoreactive T cells", Nat Rev Immunol, 6 (10) pp.751-760.
    58 J. N. Beilke, N. R. Kuhl, L. Van Kaer, and R. G. Gill (2005), "NK cells promote islet allograft tolerance via a perforin-dependent mechanism", Nat Med, 11 (10) pp.1059-1065.
    59 G. Yu, X. Xu, M. D. Vu, E. D. Kilpatrick, and X. C. Li (2006), "NK cells promote transplant tolerance by killing donor antigen-presenting cells", J Exp Med, 203 (8) pp.1851-1858.
    60 J. N. Beilke and R. G. Gill (2007), "Frontiers in nephrology: the varied faces of natural killer cells in transplantation--contributions to both allograft immunity and tolerance", J Am Soc Nephrol, 18 (8) pp.2262-2267.
    61 D. H. Raulet (2004), "Interplay of natural killer cells and their receptors with the adaptive immune response", Nat Immunol, 5 (10) pp.996-1002.
    62 W. H. Kitchens, S. Uehara, C. M. Chase, R. B. Colvin, P. S. Russell, and J. C. Madsen (2006), "The changing role of natural killer cells in solid organ rejection and tolerance", Transplantation, 81 (6) pp.811-817.
    63 M. A. Degli-Esposti and M. J. Smyth (2005), "Close encounters of different kinds: dendritic cells and NK cells take centre stage", Nat Rev Immunol, 5 (2) pp.112-124.
    64 F. Vari, R. Lord, and S. Goto (2002), "LSF-1 may modulate the indirect allorecognition pathway to delay allograft rejection", Transpl Immunol, 10 (4) pp.259-267.
    65 (1995), "Terminology for hepatic allograft rejection. International Working Party", Hepatology, 22 (2) pp.648-654.
    66 T. E. Starzl, A. J. Demetris, N. Murase, M. Trucco, A. W. Thomson, and A. S. Rao (1996), "The lost chord: microchimerism and allograft survival", Immunol Today, 17 (12) pp.577-584; discussion 588.
    67 L. W. Hsu, S. Goto, T. Nakano, C. Y. Lai, Y. C. Lin, Y. H. Kao, S. H. Chen, Y. F. Cheng, B. Jawan, K. W. Chiu, and C. L. Chen (2007), "Immunosuppressive activity of serum taken from a liver transplant recipient after withdrawal of immunosuppressants", Transpl Immunol, 17 (2) pp.137-146.
    68 N. Kamada, T. Shinomiya, T. Tamaki, and K. Ishiguro (1986), "Immunosuppressive activity of serum from liver-grafted rats. Passive enhancement of fully allogeneic heart grafts and induction of systemic tolerance", Transplantation, 42 (6) pp.581-587.
    69 R. Sumimoto and N. Kamada (1990), "Specific suppression of allograft rejection by soluble class I antigen and complexes with monoclonal antibody", Transplantation, 50 (4) pp.678-682.
    70 M. Tsurufuji, K. Ishiguro, T. Shinomiya, T. Uchida, and N. Kamada (1987), "Immunosuppressive activity of serum from liver-grafted rats: in vitro specific inhibition of mixed lymphocyte reactivity by antibodies against class II RT1 alloantigens", Immunology, 61 (4) pp.421-428.
    71 R. Lord, N. Kamada, E. Kobayashi, S. Goto, and M. Sunagawa (1995), "Isolation of a 40 kDa immunoinhibitory protein induced by rat liver transplantation", Transpl Immunol, 3 (2) pp.174-179.
    72 C. Edwards-Smith, S. Goto, R. Lord, Y. Shimizu, F. Vari, and N. Kamada (1996), "Allograft acceptance and rejection, mediated by a liver suppressor factor, LSF-1, purified from serum of liver transplanted rats", Transpl Immunol, 4 (4) pp.287-292.
    73 S. Goto, R. Lord, E. Kobayashi, F. Vari, C. Edwards-Smith, and N. Kamada (1996), "Novel immunosuppressive proteins purified from the serum of liver-retransplanted rats", Transplantation, 61 (8) pp.1147-1151.
    74 T. L. Pan, P. W. Wang, C. C. Huang, S. Goto, and C. L. Chen (2004), "Expression, by functional proteomics, of spontaneous tolerance in rat orthotopic liver transplantation", Immunology, 113 (1) pp.57-64.
    75 J. W. Fabre (1996), "The role of polymorphic donor peptides in allograft recognition and rejection", Immunol Rev, 154 pp.21-43.
    76 T. Nakano, S. Kawamoto, C. Y. Lai, T. Sasaki, T. Aki, S. Shigeta, T. Goto, S. Sato, S. Goto, C. L. Chen, and K. Ono (2004), "Liver transplantation-induced antihistone H1 autoantibodies suppress mixed lymphocyte reaction", Transplantation, 77 (10) pp.1595-1603.
    77 T. Nakano, S. Kawamoto, C. Y. Lai, L. W. Hsu, Y. C. Lin, T. Sasaki, T. Aki, S. Shigeta, T. Goto, N. Ohmori, S. Sato, S. Goto, K. Ono, and C. L. Chen (2005), "Characterization of immunosuppressive factors expressed in serum by rat tolerogenic liver transplantation", Transplant Proc, 37 (1) pp.80-81.
    78 L. W. Hsu, S. Goto, T. Nakano, C. Y. Lai, Y. H. Kao, Y. C. Lin, S. Kawamoto, K. Ono, R. Lord, T. Goto, N. Omori, S. Sato, K. C. Chiang, S. H. Chen, B. Jawan, Y. F. Cheng, K. W. Chiu, and C. L. Chen (2005), "The effects of anti-histone H1 antibody on immune cells responsible for rejection reaction", Mol Immunol, 42 (10) pp.1155-1164.
    79 T. Nakano, C. Y. Lai, S. Goto, L. W. Hsu, Y. C. Lin, Y. H. Kao, S. Kawamoto, K. C. Chiang, N. Ohmori, T. Goto, S. Sato, K. Ono, B. Jawan, Y. F. Cheng, and C. L. Chen (2006), "Role of antinuclear antibodies in experimental and clinical liver transplantation", Transplant Proc, 38 (10) pp.3605-3606.
    80 V. Ramakrishnan (1997), "Histone H1 and chromatin higher-order structure", Crit Rev Eukaryot Gene Expr, 7 (3) pp.215-230.
    81 N. Happel and D. Doenecke (2009), "Histone H1 and its isoforms: contribution to chromatin structure and function", Gene, 431 (1-2) pp.1-12.
    82 D. T. Brown, T. Izard, and T. Misteli (2006), "Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo", Nat Struct Mol Biol, 13 (3) pp.250-255.
    83 A. Konishi, S. Shimizu, J. Hirota, T. Takao, Y. Fan, Y. Matsuoka, L. Zhang, Y. Yoneda, Y. Fujii, A. I. Skoultchi, and Y. Tsujimoto (2003), "Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks", Cell, 114 (6) pp.673-688.
    84 K. Kim, J. Choi, K. Heo, H. Kim, D. Levens, K. Kohno, E. M. Johnson, H. W. Brock, and W. An (2008), "Isolation and characterization of a novel H1.2 complex that acts as a repressor of p53-mediated transcription", J Biol Chem, 283 (14) pp.9113-9126.
    85 D. I. Gabrilovich, P. Cheng, Y. Fan, B. Yu, E. Nikitina, A. Sirotkin, M. Shurin, T. Oyama, Y. Adachi, S. Nadaf, D. P. Carbone, and A. I. Skoultchi (2002), "H1(0) histone and differentiation of dendritic cells. A molecular target for tumor-derived factors", J Leukoc Biol, 72 (2) pp.285-296.
    86 T. Nakano, S. Goto, C. Y. Lai, L. W. Hsu, Y. Takaoka, S. Kawamoto, K. C. Chiang, Y. Shimada, N. Ohmori, T. Goto, S. Sato, K. Ono, Y. F. Cheng, and C. L. Chen (2010), "Immunological aspects and therapeutic significance of an autoantibody against histone H1 in a rat model of concanavalin A-induced hepatitis", Immunology, 129 (4) pp.547-555.
    87 N. Hamada, T. Maeyama, T. Kawaguchi, M. Yoshimi, J. Fukumoto, M. Yamada, S. Yamada, K. Kuwano, and Y. Nakanishi (2008), "The role of high mobility group box1 in pulmonary fibrosis", Am J Respir Cell Mol Biol, 39 (4) pp.440-447.
    88 H. Wang, O. Bloom, M. Zhang, J. M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, K. R. Manogue, E. Faist, E. Abraham, J. Andersson, U. Andersson, P. E. Molina, N. N. Abumrad, A. Sama, and K. J. Tracey (1999), "HMG-1 as a late mediator of endotoxin lethality in mice", Science, 285 (5425) pp.248-251.
    89 M. Ilmakunnas, E. M. Tukiainen, A. Rouhiainen, H. Rauvala, J. Arola, A. Nordin, H. Makisalo, K. Hockerstedt, and H. Isoniemi (2008), "High mobility group box 1 protein as a marker of hepatocellular injury in human liver transplantation", Liver Transpl, 14 (10) pp.1517-1525.
    90 P. Scaffidi, T. Misteli, and M. E. Bianchi (2002), "Release of chromatin protein HMGB1 by necrotic cells triggers inflammation", Nature, 418 (6894) pp.191-195.
    91 D. Messmer, H. Yang, G. Telusma, F. Knoll, J. Li, B. Messmer, K. J. Tracey, and N. Chiorazzi (2004), "High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization", J Immunol, 173 (1) pp.307-313.
    92 R. Izadpanah, C. Trygg, B. Patel, C. Kriedt, J. Dufour, J. M. Gimble, and B. A. Bunnell (2006), "Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue", J Cell Biochem, 99 (5) pp.1285-1297.
    93 E. Meng, Z. Guo, H. Wang, J. Jin, J. Wang, C. Wu, and L. Wang (2008), "High mobility group box 1 protein inhibits the proliferation of human mesenchymal stem cells and promotes their migration and differentiation along osteoblastic pathway", Stem Cells Dev, 17 (4) pp.805-813.
    94 M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak (1999), "Multilineage potential of adult human mesenchymal stem cells", Science, 284 (5411) pp.143-147.
    95 P. S. In 'T Anker, W. A. Noort, S. A. Scherjon, C. Kleijburg-Van Der Keur, A. B. Kruisselbrink, R. L. Van Bezooijen, W. Beekhuizen, R. Willemze, H. H. Kanhai, and W. E. Fibbe (2003), "Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential", Haematologica, 88 (8) pp.845-852.
    96 K. Le Blanc, L. Tammik, B. Sundberg, S. E. Haynesworth, and O. Ringden (2003), "Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex", Scand J Immunol, 57 (1) pp.11-20.
    97 C. D. Wan, R. Cheng, H. B. Wang, and T. Liu (2008), "Immunomodulatory effects of mesenchymal stem cells derived from adipose tissues in a rat orthotopic liver transplantation model", Hepatobiliary Pancreat Dis Int, 7 (1) pp.29-33.
    98 K. Mcintosh, S. Zvonic, S. Garrett, J. B. Mitchell, Z. E. Floyd, L. Hammill, A. Kloster, Y. Di Halvorsen, J. P. Ting, R. W. Storms, B. Goh, G. Kilroy, X. Wu, and J. M. Gimble (2006), "The immunogenicity of human adipose-derived cells: temporal changes in vitro", Stem Cells, 24 (5) pp.1246-1253.
    99 R. Yanez, M. L. Lamana, J. Garcia-Castro, I. Colmenero, M. Ramirez, and J. A. Bueren (2006), "Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease", Stem Cells, 24 (11) pp.2582-2591.
    100 S. Aggarwal and M. F. Pittenger (2005), "Human mesenchymal stem cells modulate allogeneic immune cell responses", Blood, 105 (4) pp.1815-1822.
    101 A. Bartholomew, C. Sturgeon, M. Siatskas, K. Ferrer, K. Mcintosh, S. Patil, W. Hardy, S. Devine, D. Ucker, R. Deans, A. Moseley, and R. Hoffman (2002), "Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo", Exp Hematol, 30 (1) pp.42-48.
    102 S. Inoue, F. C. Popp, G. E. Koehl, P. Piso, H. J. Schlitt, E. K. Geissler, and M. H. Dahlke (2006), "Immunomodulatory effects of mesenchymal stem cells in a rat organ transplant model", Transplantation, 81 (11) pp.1589-1595.
    103 P. Sbano, A. Cuccia, B. Mazzanti, S. Urbani, B. Giusti, I. Lapini, L. Rossi, R. Abbate, G. Marseglia, G. Nannetti, F. Torricelli, C. Miracco, A. Bosi, M. Fimiani, and R. Saccardi (2008), "Use of donor bone marrow mesenchymal stem cells for treatment of skin allograft rejection in a preclinical rat model", Arch Dermatol Res, 300 (3) pp.115-124.
    104 L. D. Clark, R. K. Clark, and E. Heber-Katz (1998), "A new murine model for mammalian wound repair and regeneration", Clin Immunol Immunopathol, 88 (1) pp.35-45.
    105 J. M. Leferovich, K. Bedelbaeva, S. Samulewicz, X. M. Zhang, D. Zwas, E. B. Lankford, and E. Heber-Katz (2001), "Heart regeneration in adult MRL mice", Proc Natl Acad Sci U S A, 98 (17) pp.9830-9835.
    106 R. G. Edwards (2008), "From embryonic stem cells to blastema and MRL mice", Reprod Biomed Online, 16 (3) pp.425-461.
    107 S. J. Samulewicz, A. Seitz, L. Clark, and E. Heber-Katz (2002), "Expression of preadipocyte factor-1(Pref-1), a delta-like protein, in healing mouse ears", Wound Repair Regen, 10 (4) pp.215-221.
    108 T. Nakano, S. Goto, C. Y. Lai, L. W. Hsu, K. Ono, S. Kawamoto, Y. C. Lin, Y. H. Kao, K. C. Chiang, N. Ohmori, T. Goto, S. Sato, C. H. Tu, B. Jawan, Y. F. Cheng, and C. L. Chen (2007), "Impact of vaccine therapy using nuclear histone H1 on allograft survival in experimental organ transplantation", Transpl Immunol, 17 (3) pp.147-152.
    109 J. C. Chen, M. L. Chang, and M. O. Muench (2003), "A kinetic study of the murine mixed lymphocyte reaction by 5,6-carboxyfluorescein diacetate succinimidyl ester labeling", J Immunol Methods, 279 (1-2) pp.123-133.
    110 C. S. Brissette-Storkus, J. C. Kettel, T. F. Whitham, K. M. Giezeman-Smits, L. A. Villa, D. M. Potter, and W. H. Chambers (2002), "Flt-3 ligand (FL) drives differentiation of rat bone marrow-derived dendritic cells expressing OX62 and/or CD161 (NKR-P1)", J Leukoc Biol, 71 (6) pp.941-949.
    111 A. Siegling, M. Lehmann, C. Platzer, F. Emmrich, and H. D. Volk (1994), "A novel multispecific competitor fragment for quantitative PCR analysis of cytokine gene expression in rats", J Immunol Methods, 177 (1-2) pp.23-28.
    112 J. Lee, H. Hwang, E. Jung, S. Huh, J. Hyun, and D. Park (2009), "Promotion of stem cell proliferation by vegetable peptone", Cell Prolif, 42 (5) pp.595-601.
    113 K. L. Pricola, N. Z. Kuhn, H. Haleem-Smith, Y. Song, and R. S. Tuan (2009), "Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism", J Cell Biochem, 108 (3) pp.577-588.
    114 M. T. Cruz, M. Goncalo, A. Figueiredo, A. P. Carvalho, C. B. Duarte, and M. C. Lopes (2004), "Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line", Exp Dermatol, 13 (1) pp.18-26.
    115 Z. Chen, J. R. Gordon, X. Zhang, and J. Xiang (2002), "Analysis of the gene expression profiles of immature versus mature bone marrow-derived dendritic cells using DNA arrays", Biochem Biophys Res Commun, 290 (1) pp.66-72.
    116 N. Giannoukakis, C. A. Bonham, S. Qian, Z. Chen, L. Peng, J. Harnaha, W. Li, A. W. Thomson, J. J. Fung, P. D. Robbins, and L. Lu (2000), "Prolongation of cardiac allograft survival using dendritic cells treated with NF-kB decoy oligodeoxyribonucleotides", Mol Ther, 1 (5 Pt 1) pp.430-437.
    117 J. I. Lee, R. W. Ganster, D. A. Geller, G. J. Burckart, A. W. Thomson, and L. Lu (1999), "Cyclosporine A inhibits the expression of costimulatory molecules on in vitro-generated dendritic cells: association with reduced nuclear translocation of nuclear factor kappa B", Transplantation, 68 (9) pp.1255-1263.
    118 J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y. J. Liu, B. Pulendran, and K. Palucka (2000), "Immunobiology of dendritic cells", Annu Rev Immunol, 18 pp.767-811.
    119 U. Grohmann, F. Fallarino, R. Bianchi, M. L. Belladonna, C. Vacca, C. Orabona, C. Uyttenhove, M. C. Fioretti, and P. Puccetti (2001), "IL-6 inhibits the tolerogenic function of CD8 alpha+ dendritic cells expressing indoleamine 2,3-dioxygenase", J Immunol, 167 (2) pp.708-714.
    120 L. J. Zhou and T. F. Tedder (1995), "A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells", Blood, 86 (9) pp.3295-3301.
    121 J. S. Zlatanova, L. N. Srebreva, T. B. Banchev, B. T. Tasheva, and R. G. Tsanev (1990), "Cytoplasmic pool of histone H1 in mammalian cells", J Cell Sci, 96 ( Pt 3) pp.461-468.
    122 R. W. Lennox and L. H. Cohen (1983), "The histone H1 complements of dividing and nondividing cells of the mouse", J Biol Chem, 258 (1) pp.262-268.
    123 D. Gabrilovich, T. Ishida, T. Oyama, S. Ran, V. Kravtsov, S. Nadaf, and D. P. Carbone (1998), "Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo", Blood, 92 (11) pp.4150-4166.
    124 K. M. Ardeshna, A. R. Pizzey, S. Devereux, and A. Khwaja (2000), "The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells", Blood, 96 (3) pp.1039-1046.
    125 K. Kikuchi, Y. Yanagawa, K. Iwabuchi, and K. Onoe (2003), "Differential role of mitogen-activated protein kinases in CD40-mediated IL-12 production by immature and mature dendritic cells", Immunol Lett, 89 (2-3) pp.149-154.
    126 I. E. Dumitriu, P. Baruah, B. Valentinis, R. E. Voll, M. Herrmann, P. P. Nawroth, B. Arnold, M. E. Bianchi, A. A. Manfredi, and P. Rovere-Querini (2005), "Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products", J Immunol, 174 (12) pp.7506-7515.
    127 J. S. Park, D. Svetkauskaite, Q. He, J. Y. Kim, D. Strassheim, A. Ishizaka, and E. Abraham (2004), "Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein", J Biol Chem, 279 (9) pp.7370-7377.
    128 Y. Shimada, T. Goto, S. Kawamoto, T. Kiso, A. Katayama, Y. Yamanaka, T. Aki, K. C. Chiang, T. Nakano, S. Goto, C. L. Chen, N. Ohmori, K. Ono, and S. Sato (2008), "Development of a two-step chromatography procedure that allows the purification of a high-purity anti-histone H1 monoclonal immunoglobulin M antibody with immunosuppressant activity", Biomed Chromatogr, 22 (1) pp.13-19.
    129 G. Trinchieri (1995), "Natural killer cells wear different hats: effector cells of innate resistance and regulatory cells of adaptive immunity and of hematopoiesis", Semin Immunol, 7 (2) pp.83-88.
    130 C. A. Biron (1997), "Activation and function of natural killer cell responses during viral infections", Curr Opin Immunol, 9 (1) pp.24-34.
    131 G. Trinchieri, M. Matsumoto-Kobayashi, S. C. Clark, J. Seehra, L. London, and B. Perussia (1984), "Response of resting human peripheral blood natural killer cells to interleukin 2", J Exp Med, 160 (4) pp.1147-1169.
    132 M. Marcusson-Stahl and K. Cederbrant (2003), "A flow-cytometric NK-cytotoxicity assay adapted for use in rat repeated dose toxicity studies", Toxicology, 193 (3) pp.269-279.
    133 D. Pinard, N. O. Olsson, W. H. Chambers, and F. Martin (1996), "High expression of NKR-P1 is not an absolute requirement for natural killer activity in BDIX rats", Cancer Immunol Immunother, 42 (1) pp.15-23.
    134 J. Macmicking, Q. W. Xie, and C. Nathan (1997), "Nitric oxide and macrophage function", Annu Rev Immunol, 15 pp.323-350.
    135 J. D. Macmicking, C. Nathan, G. Hom, N. Chartrain, D. S. Fletcher, M. Trumbauer, K. Stevens, Q. W. Xie, K. Sokol, N. Hutchinson, and Et Al. (1995), "Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase", Cell, 81 (4) pp.641-650.
    136 X. Q. Wei, I. G. Charles, A. Smith, J. Ure, G. J. Feng, F. P. Huang, D. Xu, W. Muller, S. Moncada, and F. Y. Liew (1995), "Altered immune responses in mice lacking inducible nitric oxide synthase", Nature, 375 (6530) pp.408-411.
    137 B. Puissant, C. Barreau, P. Bourin, C. Clavel, J. Corre, C. Bousquet, C. Taureau, B. Cousin, M. Abbal, P. Laharrague, L. Penicaud, L. Casteilla, and A. Blancher (2005), "Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells", Br J Haematol, 129 (1) pp.118-129.
    138 H. J. Jang, K. S. Cho, H. Y. Park, and H. J. Roh (2010), "Adipose tissue-derived stem cells for cell therapy of airway allergic diseases in mouse", Acta Histochem.
    139 L. W. Hsu, S. Goto, T. Nakano, K. D. Chen, C. C. Wang, C. Y. Lai, C. H. Hou, Y. C. Chang, Y. F. Cheng, K. W. Chiu, C. C. Chen, S. H. Chen, and C. L. Chen (2012), "The effect of exogenous histone H1 on rat adipose-derived stem cell proliferation, migration, and osteogenic differentiation in vitro", J Cell Physiol, 227 (10) pp.3417-3425.
    140 S. L. Tomchuck, K. J. Zwezdaryk, S. B. Coffelt, R. S. Waterman, E. S. Danka, and A. B. Scandurro (2008), "Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses", Stem Cells, 26 (1) pp.99-107.
    141 M. Pevsner-Fischer, V. Morad, M. Cohen-Sfady, L. Rousso-Noori, A. Zanin-Zhorov, S. Cohen, I. R. Cohen, and D. Zipori (2007), "Toll-like receptors and their ligands control mesenchymal stem cell functions", Blood, 109 (4) pp.1422-1432.
    142 E. Lombardo, O. Delarosa, P. Mancheno-Corvo, R. Menta, C. Ramirez, and D. Buscher (2009), "Toll-like receptor-mediated signaling in human adipose-derived stem cells: implications for immunogenicity and immunosuppressive potential", Tissue Eng Part A, 15 (7) pp.1579-1589.
    143 H. Hwa Cho, Y. C. Bae, and J. S. Jung (2006), "Role of toll-like receptors on human adipose-derived stromal cells", Stem Cells, 24 (12) pp.2744-2752.
    144 F. Limana, A. Germani, A. Zacheo, J. Kajstura, A. Di Carlo, G. Borsellino, O. Leoni, R. Palumbo, L. Battistini, R. Rastaldo, S. Muller, G. Pompilio, P. Anversa, M. E. Bianchi, and M. C. Capogrossi (2005), "Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation", Circ Res, 97 (8) pp.e73-83.
    145 T. Nakano, S. Goto, C. Y. Lai, L. W. Hsu, J. L. Wong, S. Kawamoto, K. C. Chiang, N. Ohmori, T. Goto, S. Sato, C. H. Yang, C. C. Wang, B. Jawan, Y. F. Cheng, K. Ono, and C. L. Chen (2008), "Involvement of autoimmunity against nuclear histone H1 in liver transplantation tolerance", Transpl Immunol, 19 (2) pp.87-92.
    146 T. Nakano, C. Y. Lai, S. Goto, L. W. Hsu, S. Kawamoto, K. Ono, K. D. Chen, C. C. Lin, K. W. Chiu, C. C. Wang, Y. F. Cheng, and C. L. Chen (2012), "Immunological and regenerative aspects of hepatic mast cells in liver allograft rejection and tolerance", PLoS One, 7 (5) pp.e37202.

    下載圖示 校內:2015-02-05公開
    校外:2015-02-05公開
    QR CODE