| 研究生: |
何允之 Ho, Yun-Chih |
|---|---|
| 論文名稱: |
液晶透鏡與玻璃透鏡於全息光學元件之製作與性能研究 Study of performance of holographic optical elements individually fabricated by liquid crystal lenses and glass lenses |
| 指導教授: |
許家榮
Sheu, Chia-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 液晶透鏡 、玻璃透鏡 、全息光學元件 、菲涅耳區圖樣 |
| 外文關鍵詞: | Liquid crystal lens, Glass lens, Holographic optical elements, Fresnel zone |
| 相關次數: | 點閱:133 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究以玻璃透鏡與液晶透鏡製作全息光學元件並比對其光學性能。全息光學元件製作方法是分別以垂直入射於單一液晶或玻璃兩種透鏡之平行光束當作物光與其另一道同調平行光束(亦即參考光)形成兩光束正面干涉的條件,並將兩光束干涉的結果記錄於光聚合薄膜所形成之全像片上,如此,該製作之全息光學元件將對入射光具有透鏡光學的能力。
以單一玻璃透鏡或液晶透鏡製作全息光學元件之曝光實驗光路一致,曝光過程中將透過不同光路設置,以最理想曝光條件I = 0.4 mW/cm2 、曝光時間60秒進行曝光,並利用偏光顯微鏡(Polarization optical microscope , POM)觀察曝光完成後的全息光學元件所呈現之菲涅耳區(Fresnel zone)圖樣情形,藉以判斷元件製作成功與否。
此外,為了確切掌握記錄於光聚合薄膜之干涉情形,全息光學元件製作前先以CCD照相機記錄球面波前與平面波前干涉之情形,以做為比對所製作之全息光學元件結果是具有一致性。最後進行透鏡與全息光學元件之光學性能比較,以玻璃透鏡製作之全息光學元件所量測出的焦距分別為3.9 cm、3.7 cm,與透鏡理論焦距4 cm並無太多誤差,在成像方面,由於全息光學元件實際可用之透鏡孔徑較小,導致其透鏡功能並不完全而造成影像沒辦法清楚呈現,但仍可證明以玻璃透鏡製成之全息光學元件的確可以將所需的透鏡資訊完整記錄下來;而以液晶透鏡製作之全息光學元件在比對菲涅耳區圖樣時,可明顯觀察出與CCD拍攝之菲涅耳區圖樣並不相同,這可能與液晶透鏡所形成的球面波前夾雜部分的平面波前有關,導致該全息光學元件並無法將液晶透鏡的透鏡資訊完整呈現。
In this thesis, holographic optical elements (HOEs) with characteristics of optical lenses were fabricated and investigated by means of individual template of glass lenses and liquid crystal (LC) lenses to demonstrate and compare their optical performance. A lot of experimental conditions were paid attention to relate the performance of fabricated HOEs including photo-exposing setup, exposure dosage, lens template, and so on.
Additionally, the polarization optical microscope (POM) was also used to observe the generated Fresnel zone patterns in the HOEs to evaluate the processes were successful or not. Especially, a color CCD (charge-coupled device) was used to observe holographic interference patterns between spherical and plane wavefronts in details before exposing processes for HOE fabrications, which were also compared consistence with respect to the generated patterns in HOEs.
[1] B. Lee, C. Yoo, and J. Jeong, “Holographic optical elements for augmented reality systems,” Proc. SPIE 11551, 1155103 (2020)
[2] G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett., 41(11), 2486-2489 (2016)
[3] D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948)
[4] E.N. Leith, J. Upatnieks, “Wavefronts reconstruction with continuous- tone objects,” J. Opt. Soc. Am., 53, 1377 (1963)
[5] E.N. Leith, J. Upatnieks, “Wavefronts reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am., 54, 1295 (1964)
[6] K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett.,39(1), 127-130 (2014)
[7] H. L. Zhang, H. Deng, W. T. Yu, M. Y. He, D. H. Li, Q. H. Wang, “Tabletop augmented reality 3D display system based on integral imaging,” JOSA. B 34(5) (2017)
[8] K. Hong, J. Yeom, C. Jang, J. Hong, B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. lett., 30(1), 127-131 (2014)
[9] 松本正一、角田市良合著,“液晶之基礎與應用” 第八版,第四章,國立編譯館,民國94年
[10] A Mouquinho, K Petrova, M T Barros, and J Sotomayor, “New Polymer Networks for PDLC Films Application,” New Polymers for Special Applications, Chapter 5, 139-164 (2012)
[11] Bruce A. Averill and Patricia Eldredge, “Chemistry: Principles, Patterns, and Applications,” 1st. Edition, Chap. 11
[12] J. Cao and B. J. Beren, “Theory of polarizable liquid crystals : Optical birefringence,” J. Chem. Phys., 99 (1993)
[13] Deng-Ke Yang, Shin-Tson Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 5, John Wiley & Sons (2006)
[14] F. C. Frank, “On the theory of liquid crystals,” Faraday SOC. 25, p.19, (1958)
[15] P. J. Collings and M. Hird, “Introduction to Liquid Crystals Chemistry and Physics,” Taylor & Francis, London (1997)
[16] M. Ye, B. Wang, T. Takahashi and S. Sato, “Properties of variable-focus liquid crystal lens and its application in focusing system,” Opt. Rev., 14, 173-175 (2007)
[17] H. W. Ren et al., “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express., 15, 11328 (2007)
[18]張繼鴻,“發展一可用電壓調控焦距的液晶元件”,私立中原大學應用物理研究所碩士論文,中華民國92年
[19] T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole- patterned electrodes on both substrates,” Jpn. J. Appl. Phys., 31, 1643-1646 (1992)
[20] Y. Choi, J. H. Park, J. H. Kim and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Master., 21, 643-646 (2002)
[21] C. H. Kuo, W. C. Chien, C. T. Hsieh, C. Y. Huang, J. J. Jiang, Y. C. Li,
M. F. Chen, Y. P. Hsieh, H. L. Kuo and C. H. Lin, “Influence of pretilt angle on disclination lines of liquid crystal lens,” Appl. Opt., 43, 4269- 4274 (2012)
[22] M. Ye, B. Wang and S. Sato, “Driving of liquid crystal lens without disclination line occurring by applying in-plane electric field,” Jpn. J. Appl. Phys., 42, 5086-5089 (2003)
[23] C. J. Hsu and C. R. Sheu, “Preventing occurrence of disclination line in liquid crystal lenses with a large aperture by means of polymer stabilization,” Opt. Express., 19, 14999-15008 (2011)
[24] F. L. Pedrotti, “Introduction to Optics,” 3rd. Edition, Chap. 7, Addison Wesley (2007)
[25] R. J. Collier, C.B. Burckhardt, L.H. Lin, “Optical Holography,” Academic Press New York and London (1971)
[26] L. C. Khoo, “Liquid Crystals,” 2nd. Edition, Chap. 1, John Wiley & Sons (2007)
[27] B. Pinto-Iguanero, A. Olivares-Pérez , I. Fuentes-Tapia “Holographic material film composed by Norland Noa 65 adhesive,” Optical Materials, 20, 225-232 (2002)
[28] Liti Holographics Inc., “Litiholo 2.0 "Instant Hologram" Film Specifications”