簡易檢索 / 詳目顯示

研究生: 何允之
Ho, Yun-Chih
論文名稱: 液晶透鏡與玻璃透鏡於全息光學元件之製作與性能研究
Study of performance of holographic optical elements individually fabricated by liquid crystal lenses and glass lenses
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 67
中文關鍵詞: 液晶透鏡玻璃透鏡全息光學元件菲涅耳區圖樣
外文關鍵詞: Liquid crystal lens, Glass lens, Holographic optical elements, Fresnel zone
相關次數: 點閱:133下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究以玻璃透鏡與液晶透鏡製作全息光學元件並比對其光學性能。全息光學元件製作方法是分別以垂直入射於單一液晶或玻璃兩種透鏡之平行光束當作物光與其另一道同調平行光束(亦即參考光)形成兩光束正面干涉的條件,並將兩光束干涉的結果記錄於光聚合薄膜所形成之全像片上,如此,該製作之全息光學元件將對入射光具有透鏡光學的能力。

    以單一玻璃透鏡或液晶透鏡製作全息光學元件之曝光實驗光路一致,曝光過程中將透過不同光路設置,以最理想曝光條件I = 0.4 mW/cm2 、曝光時間60秒進行曝光,並利用偏光顯微鏡(Polarization optical microscope , POM)觀察曝光完成後的全息光學元件所呈現之菲涅耳區(Fresnel zone)圖樣情形,藉以判斷元件製作成功與否。

    此外,為了確切掌握記錄於光聚合薄膜之干涉情形,全息光學元件製作前先以CCD照相機記錄球面波前與平面波前干涉之情形,以做為比對所製作之全息光學元件結果是具有一致性。最後進行透鏡與全息光學元件之光學性能比較,以玻璃透鏡製作之全息光學元件所量測出的焦距分別為3.9 cm、3.7 cm,與透鏡理論焦距4 cm並無太多誤差,在成像方面,由於全息光學元件實際可用之透鏡孔徑較小,導致其透鏡功能並不完全而造成影像沒辦法清楚呈現,但仍可證明以玻璃透鏡製成之全息光學元件的確可以將所需的透鏡資訊完整記錄下來;而以液晶透鏡製作之全息光學元件在比對菲涅耳區圖樣時,可明顯觀察出與CCD拍攝之菲涅耳區圖樣並不相同,這可能與液晶透鏡所形成的球面波前夾雜部分的平面波前有關,導致該全息光學元件並無法將液晶透鏡的透鏡資訊完整呈現。

    In this thesis, holographic optical elements (HOEs) with characteristics of optical lenses were fabricated and investigated by means of individual template of glass lenses and liquid crystal (LC) lenses to demonstrate and compare their optical performance. A lot of experimental conditions were paid attention to relate the performance of fabricated HOEs including photo-exposing setup, exposure dosage, lens template, and so on.

    Additionally, the polarization optical microscope (POM) was also used to observe the generated Fresnel zone patterns in the HOEs to evaluate the processes were successful or not. Especially, a color CCD (charge-coupled device) was used to observe holographic interference patterns between spherical and plane wavefronts in details before exposing processes for HOE fabrications, which were also compared consistence with respect to the generated patterns in HOEs.

    摘要 I Abstract III 致謝 XII 目錄 XIII 圖目錄 XVII 表目錄 XX 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 4 第二章 實驗原理 6 2.1 液晶材料介紹 6 2.1.1 液晶的分類與起源[9] 6 2.1.2 液晶光學特性 7 2.2 圓孔型電極液晶透鏡 10 2.2.1 圓孔型電極液晶透鏡原理 10 2.2.2 圓孔型電極液晶透鏡焦距 13 2.2.3 圓孔型電極液晶透鏡干涉條紋 14 2.2.4 圓孔型電極液晶透鏡之不連續線成因與解決方法 16 2.3 全息光學元件介紹 17 2.3.1 全息照像術干涉原理[24] 18 2.3.2 透鏡陣列全息光學元件 20 第三章 實驗材料與架構 23 3.1 實驗材料 23 3.2圓孔型電極液晶透鏡 25 3.2.1 製作圓孔型電極 25 3.2.2 NOA65介電層塗佈 27 3.2.3 配向層塗佈 27 3.2.4 製作液晶透鏡 28 3.3 液晶透鏡光學特性量測 29 3.3.1 量測液晶透鏡之實驗儀器 29 3.3.2 干涉條紋量測 30 3.3.3 焦距量測 31 3.4 製作全息光學元件 32 3.4.1 製作全息光學元件之實驗儀器 32 3.4.2 製作全息光學元件之光路架設 33 3.4.3 製作全息光學元件之曝光方式 35 第四章 實驗結果與討論 36 4.1曝光光路對全息光學元件之影響 36 4.1.1 對稱式與非對稱式曝光光路 36 4.1.2 同軸式全息照像術 39 4.2 不同曝光劑量對全息光學元件之影響 41 4.2.1 找出適當之總曝光劑量 41 4.2.2 微調單位曝光強度與曝光時 44 4.3 利用CCD照相機比對曝光前之干涉圖樣與全息光學元件之曝光後之圖樣比對 47 4.3.1 利用玻璃透鏡製作全息光學元件 47 4.3.2 利用液晶透鏡製作全息光學元件 52 4.4 透鏡樣板與全息光學元件之光學能力比對 58 第五章 結論與未來展望 63 5.1 結論 63 5.2 未來展望 64 參考資料 65

    [1] B. Lee, C. Yoo, and J. Jeong, “Holographic optical elements for augmented reality systems,” Proc. SPIE 11551, 1155103 (2020)

    [2] G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett., 41(11), 2486-2489 (2016)

    [3] D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948)

    [4] E.N. Leith, J. Upatnieks, “Wavefronts reconstruction with continuous- tone objects,” J. Opt. Soc. Am., 53, 1377 (1963)

    [5] E.N. Leith, J. Upatnieks, “Wavefronts reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am., 54, 1295 (1964)

    [6] K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett.,39(1), 127-130 (2014)

    [7] H. L. Zhang, H. Deng, W. T. Yu, M. Y. He, D. H. Li, Q. H. Wang, “Tabletop augmented reality 3D display system based on integral imaging,” JOSA. B 34(5) (2017)

    [8] K. Hong, J. Yeom, C. Jang, J. Hong, B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. lett., 30(1), 127-131 (2014)

    [9] 松本正一、角田市良合著,“液晶之基礎與應用” 第八版,第四章,國立編譯館,民國94年

    [10] A Mouquinho, K Petrova, M T Barros, and J Sotomayor, “New Polymer Networks for PDLC Films Application,” New Polymers for Special Applications, Chapter 5, 139-164 (2012)

    [11] Bruce A. Averill and Patricia Eldredge, “Chemistry: Principles, Patterns, and Applications,” 1st. Edition, Chap. 11

    [12] J. Cao and B. J. Beren, “Theory of polarizable liquid crystals : Optical birefringence,” J. Chem. Phys., 99 (1993)

    [13] Deng-Ke Yang, Shin-Tson Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 5, John Wiley & Sons (2006)

    [14] F. C. Frank, “On the theory of liquid crystals,” Faraday SOC. 25, p.19, (1958)

    [15] P. J. Collings and M. Hird, “Introduction to Liquid Crystals Chemistry and Physics,” Taylor & Francis, London (1997)

    [16] M. Ye, B. Wang, T. Takahashi and S. Sato, “Properties of variable-focus liquid crystal lens and its application in focusing system,” Opt. Rev., 14, 173-175 (2007)

    [17] H. W. Ren et al., “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express., 15, 11328 (2007)

    [18]張繼鴻,“發展一可用電壓調控焦距的液晶元件”,私立中原大學應用物理研究所碩士論文,中華民國92年

    [19] T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole- patterned electrodes on both substrates,” Jpn. J. Appl. Phys., 31, 1643-1646 (1992)

    [20] Y. Choi, J. H. Park, J. H. Kim and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Master., 21, 643-646 (2002)

    [21] C. H. Kuo, W. C. Chien, C. T. Hsieh, C. Y. Huang, J. J. Jiang, Y. C. Li,
    M. F. Chen, Y. P. Hsieh, H. L. Kuo and C. H. Lin, “Influence of pretilt angle on disclination lines of liquid crystal lens,” Appl. Opt., 43, 4269- 4274 (2012)

    [22] M. Ye, B. Wang and S. Sato, “Driving of liquid crystal lens without disclination line occurring by applying in-plane electric field,” Jpn. J. Appl. Phys., 42, 5086-5089 (2003)

    [23] C. J. Hsu and C. R. Sheu, “Preventing occurrence of disclination line in liquid crystal lenses with a large aperture by means of polymer stabilization,” Opt. Express., 19, 14999-15008 (2011)

    [24] F. L. Pedrotti, “Introduction to Optics,” 3rd. Edition, Chap. 7, Addison Wesley (2007)

    [25] R. J. Collier, C.B. Burckhardt, L.H. Lin, “Optical Holography,” Academic Press New York and London (1971)

    [26] L. C. Khoo, “Liquid Crystals,” 2nd. Edition, Chap. 1, John Wiley & Sons (2007)

    [27] B. Pinto-Iguanero, A. Olivares-Pérez , I. Fuentes-Tapia “Holographic material film composed by Norland Noa 65 adhesive,” Optical Materials, 20, 225-232 (2002)

    [28] Liti Holographics Inc., “Litiholo 2.0 "Instant Hologram" Film Specifications”

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE