| 研究生: |
吳永評 Wu, Yung-Ping |
|---|---|
| 論文名稱: |
鐵矽鉻合金積層電感與銀內電極反應生成AgCrO2反應機制及抑制其生成方法之研究 The formation mechanism and prevention methods of AgCrO2 during co-firing silver inner electrode and Fe-Si-Cr alloy powders in metal multilayer chip power inductors |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 鐵矽鉻合金 、積層 、熱處理 、亞鉻酸銀 |
| 外文關鍵詞: | Alloy, Multilayers, Annealing, Silver Chromite |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因應全球智慧化節能潮流,無線通訊及可攜式行動裝置產品要求高效能及低功耗設計,因此電源模組內部負責儲能轉換及整流濾波之功率電感扮演重要節能元件角色,電源模組內DC-DC轉換器應用需要小尺寸,低直流電阻,高飽和電流和高電感感量,Fe-Si-Cr合金具有較高的飽和磁化強度和較低的高頻磁損耗,具有更好的直流疊加特性,於功率電感中已廣泛採用,目前一體成型Fe-Si-Cr合金功率電感技術相對成熟,雖然廣泛應用於合金功率電感中,但因需高壓成型,不利於小型化的需求;合金積層晶片功率電感具有易於小型化、優異飽和電流性質及低製程成本優勢,已開始受到產業界的重視及投入研發。在Fe-Si-Cr合金積層電感的生產過程中,Fe-Si-Cr合金粉末表面上高溫熱處理形成富鉻層,因為Cr比Fe和Si更容易被氧化,在高溫熱處理過程中,容易沿著晶界擴散到表面,與氧離子反應,在表面生成富氧化鉻層,進而與Ag內電極反應,形成大量片狀AgCrO2;AgCrO2為一種p-type半導體,導致合金積層電感元件失效或短路等嚴重問題。本研究探討不同熱處理溫度與氣氛對Fe-Si-Cr薄帶與Ag電極間反應特性之影響,設計實驗研究其生成機制,找出抑制AgCrO2生成的方法,並將此方法,實際應用於Fe-Si-Cr合金積層電感的製作。
本研究實驗結果顯示,在大氣環境下熱處理,O2不僅會促使Ag大量揮發並擴散,更使Ag與Fe-Si-Cr的熱氧化層(Thermal grown oxide layer, TGO layer) Cr2O3以類似於化學氣相沉積的反應生成大量片狀AgCrO2,在溫度低於650 ˚C時,Ag與Fe-Si-Cr 合金的熱氧化層Cr2O3會先反應生成Ag2CrO4,再與Cr2O3反應生成AgCrO2;Ag2CrO4熔點658 ˚C低於燒結溫度750 ˚C,在接近熔點的溫度,容易揮發沿著粉末間的孔隙移動,與持續揮發的Cr2O3反應,藉由氣相反應,在粉末間的孔隙與產品表面,生成大量的六角片狀物AgCrO2。以N2作為熱處理氣氛,則可有效降低Ag的擴散情形,抑制AgCrO2生成,使Ag線路的連續性提高,再經過空氣氛熱處理,提高Fe-Si-Cr 合金粉末表面的電阻,提升電感的特性;
另外利用玻璃等對Fe-Si-Cr 合金粉末進行表面處理,抑制易揮發之TGO生成,也可提高合金材料的電阻及崩潰電壓,並提高電感的特性。
In the multilayer Fe-Si-Cr alloy power inductors, a chromium-rich layer is formed onto the Fe-Si-Cr alloy powder surface after annealing because Cr is more easily oxidized than Fe and Si and tends to diffuse to the surface along the grain boundaries to react with oxygen ions. It is resulted in the reaction between Ag and Fe-Si-Cr thermally grown oxide (TGO) layer, Cr2O3, to form a large amount of flaky AgCrO2. Since AgCrO2 is a p-type semiconductor with delafossite structure and the resistivity is about 4.5 × 103 Ω∙m. The conversion efficiency of inductor is reduced by the increasing of eddy current loss. In air atmosphere, O2 not only enhances the volatilization and diffusion of Ag, but also resulted in the reaction between Ag and Cr2O3, to form a large amount of flaky AgCrO2 via the mechanism of chemical vapor deposition (CVD). When the temperature is lower than 650 ̊C, the Ag will react with the Cr2O3 to form Ag2CrO4, and then react with Cr2O3 to form AgCrO2. When the annealing temperature is near the melting point, Ag2CrO4 volatilizes easily along the pores between the alloy powders, and reacts with the volatile Cr2O3 continuously. And it will result a large amount of hexagonal flaky AgCrO2 between the pores of alloy powder and the surface of product. In nitrogen atmosphere, the diffusion of Ag can be effectively reduced, the formation of AgCrO2 can be suppressed. The electrical characteristics of the inductors can be improved also.
[1] Shiroki, K.; Kawano, K.; Matsuura, H.; Kishi, H., New Type Metal Composite Material for SMD Power Inductor. J. Jpn. Soc. Powder Powder Metallurgy 2014, 61 (S1), S242-S244.
[2] Samata, T.; Ogawa, H., INDUCTOR. US Patent 20140009252 A1.
[3] Hsiang, H.I.; Fan, L.F.; Ho, K.T., Minor yttrium nitrate addition effect on FeSiCr alloy powder core electromagnetic properties. J. Magn. Magn. Mater. 2017, 444, 1-6.
[4] Shim, K. B.; Cho, N. T.; Lee, S. W., Silver diffusion and microstructure in LTCC multilayer couplers for high frequency applications. J. Mater. Sci. 2000, 35 (4), 813-820.
[5] Hsi, C. S.; Chen, Y. R.; Hsiang, H. I., Diffusivity of silver ions in the low temperature co-fired ceramic (LTCC) substrates. J. Mater. Sci. 2011, 46 (13), 4695-4700. [44]
[6] Naghib zadeh, H.; Oder, G.; Hesse, J.; Reimann, T.; Töpfer, J.; Rabe, T., Effect of oxygen partial pressure on co-firing behavior and magnetic properties of LTCC modules with integrated NiCuZn ferrite layers. J. Electroceram. 2016, 37 (1-4), 100-109.
[7] Wu, Y. P.; Chiang, H. Y.; Hsiang, H. I., Interactions between silver inner electrode and Fe-Si-Cr alloy of metal multilayer chip inductors. AIP ADVANCES 8, 085006 (2018)
[8] Xiong, D.; Wang, H.; Zhang, W.; Zeng, X.; Chang, H.; Zhao, X.; Chen, W.; Cheng, Y. B., Preparation of p-type AgCrO2 nanocrystals through low-temperature hydrothermal method and the potential application in p-type dye-sensitized solar cell. J. Alloy. Compd. 2015, 642, 104-110.
[9] Shokrollahi, H.; Janghorban, K., Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 2007, 189 (1-3), 1-12.
[10] S. Y. Tong and M. J. Tung, "Introductions to Metal Power Inductor Technology for Power Modules," Industrial Materials, 2016.
[11] 鄭明得、余志成, 「薄型大電流電感器鐵芯粉末調配之穩健最佳化設計」,中國機械工程學會第二十六屆全國學術研討會論文集,2009年。
[12] TDK, "Multilayer Chip Inductor MLG0402Q/MLG0603P," Tech Journal, 2011.
[13] P. Kollár, Z. Birčáková, J. Füzer, R. Bureš, and M. Fáberová, "Power loss separation in Fe-based composite materials," Journal of Magnetism and Magnetic Materials, vol. 327, pp. 146-150, 2013.
[14] P. Kollár, D. Olekšáková, V. Vojtek, J. Füzer, M. Fáberová, and R. Bureš, "Steinmetz law for ac magnetized iron-phenolformaldehyde resin soft magnetic composites," Journal of Magnetism and Magnetic Materials, vol. 424, pp. 245-250, 2017.
[15] A. Taghvaei, H. Shokrollahi, K. Janghorban, and H. Abiri, "Eddy current and total power loss separation in the iron–phosphate–polyepoxy soft magnetic composites," Materials & Design, vol. 30, no. 10, pp. 3989-3995, 2009.
[16] Y. Liu, Y. Yi, W. Shao, and Y. Shao, "Microstructure and magnetic properties of soft magnetic powder cores of amorphous and nanocrystalline alloys," Journal of Magnetism and Magnetic Materials, vol. 330, pp. 119-133, 2013.
[17] T. Saito, S. Takemoto, and T. Iriyama, "Resistivity and core size dependencies of eddy current loss for Fe-Si compressed cores," IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 3301-3303, 2005.
[18] T. Maeda et al., "Development of super low iron-loss P/M soft magnetic material," SEI TECHNICAL REVIEW-ENGLISH EDITION-, vol. 60, p. 3, 2005.
[19] 汪建民,「粉末冶金技術手冊」,中華民國粉末冶金協會,1999年。
[20] 謝旭霞、呂建偉、金兆偉、杜宇,「金屬軟磁粉芯的研究進展 (熱噴塗技術)」,pp. 71-76,2014年。
[21] Z. Zhang, X. Liu, S. Feng, and K. M. U. Rehman, "Fabrication of an Fe80.5Si7.5B6Nb5Cu Amorphous-Nanocrystalline Powder Core with Outstanding Soft Magnetic Properties," Journal of Electronic Materials, vol. 47, no. 3, pp. 1819-1823, 2018.
[22] C. Smith et al., "Comparison of the crystallization behavior of Fe-Si-B-Cu and Fe-Si-B-Cu-Nb-based amorphous soft magnetic alloys," Metallurgical and Materials Transactions A, vol. 45, no. 7, pp. 2998-3009, 2014.
[23] 張軒耀,「Fe-Si-Cr合金粉之添加水玻璃絕緣處理研究」,臺北科技大學材料及資源工程系研究所學位論文,2014年。
[24] 陳柏宇,「退火後鐵基非晶質薄帶之結構性質分析」,臺灣大學材料科學與工程學研究所學位論文,2016年。
[25] W. H. Wang, C. Dong, and C. Shek, "Bulk metallic glasses," Materials Science and Engineering: R: Reports, vol. 44, no. 2-3, pp. 45-89, 2004.
[26] B. Zuo, N. Saraswati, T. Sritharan, and H. Hng, "Production and annealing of nanocrystalline Fe–Si and Fe–Si–Al alloy powders," Materials Science and Engineering: A, vol. 371, no. 1-2, pp. 210-216, 2004.
[27] M. Khajepour and S. Sharafi, "Characterization of nanostructured Fe–Co–Si powder alloy," Powder technology, vol. 232, pp. 124-133, 2012.
[28] P. Shyni and A. Perumal, "Structural and magnetic properties of nanocrystalline Fe–Co–Si alloy powders produced by mechanical alloying," Journal of Alloys and Compounds, vol. 648, pp. 658-666, 2015.
[29] S. Swaminathan and M. Spiegel, "Effect of alloy composition on the selective oxidation of ternary Fe-Si-Cr, Fe-Mn-Cr model alloys," Surface and Interface Analysis, vol. 40, no. 3-4, pp. 268-272, 2008.
[30] S. F. Chen, H. Y. Chang, S. J. Wang, S. H. Chen, and C. C. Chen, "Enhanced electromagnetic properties of Fe–Cr–Si alloy powders by sodium silicate treatment," Journal of Alloys and Compounds, vol. 637, pp. 30-35, 2015.
[31] X. Wang, J. Li, N. Zhang, J. Xie, D. Liang, and L. Deng, "Evolution of hyperfine structure and magnetic characteristic in Fe-Si-Cr alloy with increasing heat treatment temperature," Materials & Design, vol. 96, pp. 314-322, 2016.
[32] Q. Guo, S. Liu, X. Wu, L. Liu, and Y. Niu, "Scaling behavior of two Fe-xCr-5Si alloys under high and low oxygen pressures at 700°C," Corrosion Science, vol. 100, pp. 579-588, 2015.
[33] P. Piccardo et al., "Metallic interconnects for SOFC: Characterization of their corrosion resistance in hydrogen/water atmosphere and at the operating temperatures of differently coated metallic alloys," Surface and Coatings Technology, vol. 201, no. 7, pp. 4471-4475, 2006.
[34] H. Ogawa, A. Tanada, H. Matsuura, K. Tanaka, H. Kishi, and K. Kawano, "Coil-type electronic component and process for producing same," ed: US Patent 8749339 B2, 2014.
[35] 劉坤儒,「行星式球磨對 Fe-Si-Cr 合金粉末之顯微結構與電磁特性影響之研究」,成功大學資源工程學系學位論文,2017年。
[36] Wu, Y. P.; Chiang, H. Y.; Hsiang, H. I., AgCrO2 formation mechanism during silver inner electrode and Fe–Si–Cr alloy powder co-firing in metal multilayer chip power inductors, Journal of Materials Science: Materials in Electronics, Vol. 30, Issue 8, pp 8080–8088, 2019.
[37] J. H. Jean, C. R. Chang, and C. D. Lei, "Sintering of a Crystallizable CaO‐B2O3‐SiO2 Glass with Silver," Journal of the American Ceramic Society, vol. 87, no. 7, pp. 1244-1249, 2004.
[38] A. Roesler, J. Schare, and C. Hettler, "Integrated power electronics using a ferrite-based low-temperature co-fired ceramic materials system," in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, 2010, pp. 720-726: IEEE.
[39] M. Eberstein, M. Wenzel, C. Feller, T. Seuthe, and F. Gora, "Silver processing in thick film technology for power electronics," presented at the Proceedings 8th international CICMT conference and exhibition, Erfurt, 2012.
[40] C. Y. Chen and W. H. Tuan, "Evaporation of silver during cofiring with barium titanate," Journal of the American Ceramic Society, vol. 83, no. 7, pp. 1693-1698, 2000.
[41] Z. Lu and J. Zhu, "Thermal evaporation of pure Ag in SOFC-relevant environments," Electrochemical and Solid-State Letters, vol. 10, no. 10, pp. B179-B182, 2007.
[42] W. Meulenberg, O. Teller, U. Flesch, H. Buchkremer, and D. Stöver, "Improved contacting by the use of silver in solid oxide fuel cells up to an operating temperature of 800˚C," J. Mater. Sci., vol. 36, no. 13, pp. 3189-3195, 2001.
[43] N. Akhtar, S. P. Decent, and K. Kendall, "Structural stability of silver under single-chamber solid oxide fuel cell conditions," International journal of hydrogen energy, vol. 34, no. 18, pp. 7807-7810, 2009.
[44] S. W. Sofie, P. Gannon, and V. Gorokhovsky, "Silver–chromium oxide interactions in SOFC environments," Journal of Power Sources, vol. 191, no. 2, pp. 465-472, 2009.
[45] J. H. Jean and C. R. Chang, "Interfacial Reaction Kinetics between Silver and Ceramic‐Filled Glass Substrate," Journal of the American Ceramic Society, vol. 87, no. 7, pp. 1287-1293, 2004.
[46] 李英杰、蔡佩蓉、詹振豪、李文熙,“探討燒結參數對於抑制銀擴散的 (Zn, Mg) TiO3-based 積層陶瓷電容器之影響”,鑛冶:中國鑛冶工程學會會刊, no. 211,pp. 79-86,2010。
[47] B. Chalmers, R. King, and R. Shuttleworth, "The thermal etching of silver," Proceedings of the Royal Society of London A, vol. 193, no. 1035, pp. 465-483, 1948.
[48] X. Bao, G. Lehmpfuhl, G. Weinberg, R. Schlögl, and G. Ertl, "Variation of the morphology of silver surfaces by thermal and catalytic etching," Journal of the Chemical Society, Faraday Transactions, vol. 88, no. 6, pp. 865-872, 1992.
[49] T. C. Wei and J. Phillips, "Thermal and catalytic etching: mechanisms of metal catalyst reconstruction," in Advances in catalysis, vol. 41: Elsevier, 1996, pp. 359-421.
[50] J. Leroux and E. Raub, "Untersuchungen über das Verhalten von Silber und Silber‐Kupferlegierungen beim Glühen in Sauerstoff und Luft," Zeitschrift für anorganische und allgemeine Chemie, vol. 188, no. 1, pp. 205-231, 1930.
[51] R. Grimley, R. Burns, and M. G. Inghram, "Thermodynamics of the vaporization of Cr2O3: dissociation energies of CrO, CrO2, and CrO3," The Journal of Chemical Physics, vol. 34, no. 2, pp. 664-667, 1961.
[52] C. Gindorf, L. Singheiser, and K. Hilpert, "Vaporisation of chromia in humid air," Journal of Physics and Chemistry of Solids, vol. 66, no. 2-4, pp. 384-387, 2005.
[53] G. C. Fryburg, F. J. Kohl, and C. A. Stearns, "Enhanced Oxidative Vaporization of Cr2O3 and Chromium by Oxygen Atoms," Journal of the Electrochemical Society, vol. 121, no. 7, pp. 952-959, 1974.
[54] K. Hilpert, D. Das, M. Miller, D. Peck, and R. Weiss, "Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes," Journal of the Electrochemical Society, vol. 143, no. 11, pp. 3642-3647, 1996.
[55] E. J. Opila et al., "Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g)," The Journal of Physical Chemistry A, vol. 111, no. 10, pp. 1971-1980, 2007.
[56] H. Asteman, J. E. Svensson, and L. G. Johansson, "Evidence for chromium evaporation influencing the oxidation of 304L: the effect of temperature and flow rate," Oxidation of metals, vol. 57, no. 3-4, pp. 193-216, 2002.
[57] H. Asteman, J. E. Svensson, and L. G. Johansson, "Oxidation of 310 steel in H2O/O2 mixtures at 600 ˚C: the effect of water-vapour-enhanced chromium evaporation," Corrosion Science, vol. 44, no. 11, pp. 2635-2649, 2002.
[58] H. Asteman, J. E. Svensson, and L. G. Johansson, "Effect of Water-Vapor-Induced Cr Vaporization on the Oxidation of Austenitic Stainless Steels at 700 and 900°C Influence of Cr/Fe Ratio in Alloy and Ce Additions," Journal of the Electrochemical Society, vol. 151, no. 3, pp. B141-B150, 2004.
[59] J. Zhu and H. Ghezel-Ayagh, "Cathode-side electrical contact and contact materials for solid oxide fuel cell stacking: A review," International Journal of Hydrogen Energy, vol. 42, no. 38, pp. 24278-24300, 2017.
[60] M. A. Marquardt, N. A. Ashmore, and D. P. Cann, "Crystal chemistry and electrical properties of the delafossite structure," Thin Solid Films, vol. 496, no. 1, pp. 146-156, 2006.
[61] M. Ciešlak-Golonka, "Thermal decomposition and spectroscopic properties of silver chromate," Journal of Thermal Analysis and Calorimetry, vol. 38, no. 11, pp. 2501-2513, 1992.
[62] C. W. Pistorius, "Phase diagrams of silver sulfate, silver selenate, and silver chromate to 40 kbar," The Journal of Chemical Physics, vol. 46, no. 6, pp. 2167-2171, 1967
[63] C. Gélinas, F. Chagnon, S. Pelletier, "Iron-Resin Composites for High Frequency AC Magnetic Applications, " Advances in Powder Metallurgy & Particulate Materials, 37-45, 1997.
[64] M.A. Abshinova, N.E. Kazantseva, P. Sáha, I. Sapurina, J. Kovářová, J. Stejskal, "The enhancement of the oxidation resistance of carbonyl iron by polyaniline coating and consequent changes in electromagnetic properties," Polymer Degradation and Stability, 93(10), 1826-1831, 2008.
[65] H. Rutz and F. G. Hanejko, "Doubly-coated iron particles," U.S. patent 5,063,011,1991.
[66] S. Rebeyrat, J. L. Grosseau-Poussard, J.F. Dinhut," Oxidation of phosphated iron powders," Thin Solid Films, No.379, 39-146, 2000.
[67] A. Moorhead, H. Kim," Composite of coated magnetic alloy particle," U.S. patent 6,110,420, 2000.
[68] K. Anand, B. Kliman, E. Iorio," Coated ferromagnetic particles and composite magnetic articles thereof," U.S. patent 6,808,807, 2004.
[69] K. Tsurumi," Impulse coil tester," U.S. patent 4,897,794, 1990.
[70] E. Wiedenbrug, G. Frey, J. Wilson, " Impulse testing as a predictive maintebance tool", Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Atlanta GA, USA 24-26 August, 2003
[71] L. H. Tjeng, M. B. J. Meinders, J. van Elp, J. Ghijsen, G. A. Sawatzky, and R. L. Johnson, "Electronic structure of Ag2O," Physical review. B, vol. 41, no. 5, pp. 3190-3199, 1990.
[72] L. Wilkinson and J. Zhu, "Ag-perovskite composite materials for SOFC cathode–interconnect contact," Journal of the Electrochemical Society, vol. 156, no. 8, pp. B905-B912, 2009.
[73] H. W. Abernathy, E. Koep, C. Compson, Z. Cheng, and M. Liu, "Monitoring Ag−Cr Interactions in SOFC Cathodes Using Raman Spectroscopy," The Journal of Physical Chemistry C, vol. 112, no. 34, pp. 13299-13303, 2008.