簡易檢索 / 詳目顯示

研究生: 許丙霖
Hsu, Pin-Ling
論文名稱: 平版式噴射致冷系統之研究
Study of Plate Type Ejector Refrigerating Syatem
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 80
中文關鍵詞: 噴射器致冷Novec649田口方法吸入比
外文關鍵詞: Ejector cooling, Novec 649, Taguchi methods, Entrainment rate
相關次數: 點閱:104下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為建立一小容量可普及化之噴射致冷系統,本論文針對核心的噴射器進行平版化的改良,以建立一吸氣最佳化的設計流程,並進行試作驗證。
    設計部分,先以CFD Fluent做數值模擬,使用噴射器理論與阻塞現象驗證模型,再以一維噴射器理論設計噴嘴喉部、出口與等截面積段之面積大小,接續以田口方法的L9直交表配合二維數值模擬作幾何長度與角度之設計,進行幾何最佳化,最後以常壓加熱與真空壓差之參數調整進行吸氣驗證。在試作的部分,以兩壓克力之壓合密封的方式製作平版型噴射器,使用Novec649為工作流體。模擬部分,透過設計流程中的田口試驗方式,在模擬部分可增加16.2%的吸入效率,交互作用影響部分可增加4.7%之效果,而一設計流程可建立平版型噴射器設計基礎。吸入驗證,由於壓力容器無法維持長時間的穩壓,使得量測之數據大多為暫態形式,無法進行有效驗證,僅能證明具有其吸入效果。

    In order to establish a generalizable small-capacity ejector refrigerating system, this study aims at optimizing the entrainment rate of the system by re-designing and fabricating the core ejector. The process of designing an optimized core ejector has been constructed, and the design verification test was also employed.

    The design processes are as follows. First, construct a simulation model by CFD. Second, use the ejector principle and choke effect to validate the model. Third, design a nozzle throat, a nozzle exit, and cross-sectional area via the one-dimension ejector theory. Furthermore, the Taguchi method (L9 orthogonal array) and two dimensional numerical simulations were employed to optimize the length and angle. Finally, verify the gas entrainment rate under different pressure and temperature settings. In the pilot run, I used two acrylic sheets to fabricate an ejector, and selected Novec 649 as the working fluid.

    Through the Taguchi designing process, the suction efficiency of the analog part was increased by 16.2%, and the interaction was increased by 4.7%, while the designing process can be the basis of establishing plate type ejectors.

    In the verification section, the data can not be effectively verified because the pressure vessels cannot maintain a stable pressure for sufficient time; therefore, the measured data is in transient form, which can only prove the suction effect.

    摘要 I Abstract II 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 符號說明 XVI 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 2 1-3文獻回顧 4 1-3-1噴射器原理 5 1-3-2噴射器設計 9 1-3-3 噴射致冷系統 19 1-3-4 工作流體 20 1-4研究流程 22 第二章 噴射致冷系統性能預測 24 2-1噴射致冷系統分析 24 2-2漸縮漸擴噴嘴原理 25 2-3 漸擴管震波擴散理論 31 2-4 一維等壓噴射器模型 32 2-5 噴射器性能預測 36 第三章 數值模擬 38 3-1 數值模擬 38 3-2模擬假設 38 3-3統御方程式 38 3-4數值方法 41 3-4-1流體計算域之建立 41 3-4-2網格建立 43 3-4-3獨立網格分析 45 3-4-4邊界條件之設定 46 第四章 田口幾何設計 49 4-1田口實驗設計法 49 4-1-1田口實驗設計法簡介 49 4-1-2 因子選擇 50 4-1-3 直交表 51 4-2 田口模擬分析 52 4-3 最佳化調整 54 第五章 實驗方法與設備 55 5-1實驗方法 55 5-2實驗架設 55 5-2-1平版型噴射器 55 5-2-2壓力容器 57 5-2-3測試設備 58 第六章 結果與討論 60 6-1噴射模擬驗證 60 6-1-1噴射器理論驗證 60 6-1-2 阻塞效應驗證 65 6-2 吸氣實驗之驗證 68 6-2-1吸氣實驗之數據分析 68 6-2-2實驗與模擬比較 70 第七章 結論與建議 71 7-1結論 71 7-1-1數值模擬結論 71 7-1-2實驗結論 72 7-1-3 最佳化設計流程 72 7-2建議 73 參考文獻 75 附錄一、田口分析模擬流場圖 78

    [1] Montreal-Protocol,http://montreal-protocol.org/new_site/en/index.php
    [2] Chunnanond K, Aphornratana S. Ejectors: applications in refrigeration technology.Renewable and Sustainable Energy Reviews, Vol. 8, pp. 129-155, 2004.
    [3] J. H. Keenan, E. P. Neumann, A Simple Air Ejector . Journal of Applied Mechanical,Trans. ASME,Vol 64, pp. 75-81,1942.
    [4] J. H. Keenan, E. P. Neumann, F. Lustwerk, An Investigation of Ejector Design by Analysis and Experiment. Journal of Applied Mechanical, Trans. ASME,Vol 72 , pp. 299-309,1950.
    [5] H. Tabor, Use of Solar Energy for Cooling Purposes, Solar Energy, Vol. 6, pp. 136-142,1962.
    [6] Wail E, Optimum Working Fluid For Solar Powered Rankine Cycle Cooling of Buildings, Solar Energy,Vol.25,pp. 235-241,1980.
    [7] Ehud Finkelstein, Some Engineering Aspects of Reject Heat or Solar Operated Air-Conditioners, Heat Recovery Systems, Vol. 3, No.1, pp. 19-22, 1983.
    [8] H. El-Dessouky, H. Ettouney, I. Alatiqi, G. Al-Nuwaibit. Evaluation of steam jet ejectors. Chemical Engineering and Processing: Process Intensification, Vol. 41, pp. 551–561, 2002.
    [9] Kazuyasu Matsuo, Kengo Sasaguuchi, Koichi Tasaki, Hiroaki Mochizuki, Investigation of Supersonic Air Ejectors : Part 2,Effects of Throat-Area-Ratio on Ejector Performance, Bulletin of JSME ,Vol. 25, pp. 1898-1905, 1982.
    [10] Munday JT, Bagster DF. A New Theory Applied to Steam Jet Refrigeration. Ind Eng Chem Proc ,Vol. 16,pp.442–449. 1997
    [11] B.J. Huang, J.M. Chang, C.P. Wang, V.A. Petrenko, A 1-D Analysis of Ejector Performance, International Journal of Refrigeration,Vol. 22, pp. 354–364 , 1999.
    [12] S. K.Chou, , P. R. Yang, and C. R.Yap, Maximum Mass Flow Ratio Due to Secondary Flow Choking in an Ejector Refrigeration System, International Journal of Refrigeration, Vol. 24,pp. 486-499, 2001.
    [13] E. Rusly, L. Aye, W.W.S. Charters, A. Ooi, CFD Analysis of Ejector in a Combined Ejector Cooling System, International Journal of Refrigeration, Vol. 28, pp. 1092–1101, 2005.
    [14] Ala Bouhanguel, Philippe Desevaux, Flow Visualization in Supersonic Ejectors Using Laser Tomography Techniques, International Journal of Refrigeration, Vol. 34, pp. 1633-1640, 2011.
    [15] Jia Yan, Wenjian Cai, Yanzhong Li, Geometry parameters effect for air-cooled ejector cooling systems with R134a refrigerant , Renewable Energy, Vol. 46, pp. 155-163, 2012.
    [16] B. J. Huang, C. B. Jiang and F. L. Hu, Ejector Performance Characteristics and Design Analysis of Jet Refrigeration System, J. Eng. Gas Turbines Power , Vol. 107, pp. 792-802, 1985.
    [17] B.J. Huang, J.M. Chang, Empirical Correlation of Ejector Design, Int. J. Refrigeration, Vol. 22 , pp. 279-388, 1999.
    [18]D. W. Sun,Variable Geometry Ejectors and Their Applications in Ejector Refrigeration Systems, Energy, Vol. 21, pp. 919–929, 1996.
    [19]S. Varga, A.C. Oliveira, B. Diaconu, Numerical Assessment of Steam Ejector Efficiencies Using CFD, International Journal of Refrigeration, Vol. 32, pp. 1203–1211, 2009.
    [20]T. Sriveerakul, S. Aphornratana, K. Chunnanond, Performance Prediction of Steam Ejector Using Computational Fluid Dynamics: Part 1 Validation of The CFD Results,International Journal of Thermal Sciences, Vol. 46, pp. 812–822, 2007.
    [21] R. Yapici, H.K. Ersoy, A. Aktoprakoglu, H.S. HalkacI, O. Yigit, TExperimental Determination of the Optimum Performance of Ejector Refrigeration System Depending on Ejector Area Ratio, International Journal of Refrigeration, Vol. 31, pp. 1183–1189, 2008.
    [22] J. Yen, C. Wenjian, Area Ratio Effects to The Performance of Air-cooled Ejector Refrigeration Cycle with R134a Refrigerant, Energy Conversion and Management, Vol. 53, pp. 240–246, 2012.
    [23] K. Cizungu, M. Groll, Z.G. Ling, Modelling and Optimization of Two-phase Ejectors for Cooling Systems,Applied Thermal Engineering, Vol. 25, pp. 1979–1994, 2005.
    [24] X. Ma, W. Zhang, S.A. Omer, S.B. Riffat, Experimental Investigation of a Novel Steam Ejector Refrigerator Suitable for Solar Energy Applications, Applied Thermal Engineering, Vol. 30, pp. 1320–1325,2010.
    [25] S. Varga, A.C. Oliveira, X. Ma, S.A. Omer, W. Zhang, S.B. Riffat
    Experimental and Numerical Analysis of a Variable Area Ratio Steam Ejector
    International Journal of Refrigeration, Vol. 34, pp. 1668–1675, 2011.
    [26]S. Varga, A.C. Oliveira, B. Diaconu, Influence of Geometrical Factors on Steam Ejector Performance – A Numerical Assessment, International Journal of Refrigeration, Vol. 32, pp. 1694–1701,2009.
    [27]S.B. Riffat, S.A. Omer, CFD Modelling and Experimental Investigation of an Ejector Refrigeration System Using Methanol as The Working Fluid, International Journal of Energy Research, Vol. 25, pp. 115–128,2001.
    [28]K. Chunnanond, S. Aphornratana, An Experimental Investigation of a Steam Ejector Refrigerator: The Analysis of The Pressure Profile Along The Ejector, Applied Thermal Engineering, Vol. 24, pp. 311–322, 2004.
    [29]I.W. Eames, A.E. Ablwaifa, V. Petrenko, Results of an Experimental Study of an Advanced Jet-pump Refrigerator Operating with R245fa, Applied Thermal Engineering, Vol. 27, pp. 2833–2840, 2007.
    [30]Y. Zhu, W. Cai, C. Wen, Y. Li, Numerical Investigation of Geometry Parameters for Design of High Performance Ejectors, Applied Thermal Engineering, Vol. 29, pp. 898–905, 2009.
    [31]K. Pianthong, W. Seehanam, M. Behnia, T. Sriveerakul, S. Aphornratana, Investigation and Improvement of ejector Refrigeration System Using Computational Fluid Dynamics Technique, Energy Conversion and Management, Vol. 48, pp. 2556–2564, 2007.
    [32] 鄭兆偉,噴射器最佳化截面積段長度的設計與分析,台灣大學機械工程所,2011。
    [33]P. Chaiwongsa, S. Wongwises, Experimental Study on R-134a Refrigeration System Using a Two-phase Ejector as an Expansion Device, Applied Thermal Engineering, Vol. 28, pp. 467–477,2008.
    [34] 鐘威宇,噴射器漸擴段長度的最佳化設計與分析,台灣大學機械工程所,2012。
    [35]ANSYS Fluent 12.0 Theory Guide, 2009
    [36]A. J. Stepanoff, Centrifugal and Axial Flow Pumps: Theory, Design, and Application 2nd, John Wiley and Sons, 1957.
    [37] J. O. Hinze. Turbulence. McGraw-Hill Publishing Co., New York, 1975
    [38] Manurung Maycold, Perancangan Dan Simulasi Aliran Fluida Pada Turbin Uap Siklus Rankine Organik Dengan Daya Output 110 KW, Department of Mechanical Engineering, University Sumatera Utara, 2010
    [39] 李輝煌,”田口方法:品質設計的原理與實務”,高立圖書有限公司出版,2012年。

    下載圖示 校內:2015-09-05公開
    校外:2019-09-05公開
    QR CODE