| 研究生: |
何家輝 Ho, Ka-Fai |
|---|---|
| 論文名稱: |
以動態法計算CHAMP衛星短弧軌道 CHAMP Satellite Short-arc Orbit Determination using Kinematic Method |
| 指導教授: |
楊名
Yang, Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量工程學系 Department of Surveying Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 動態法 、短弧軌道 |
| 外文關鍵詞: | short-arc orbit, kinematic, CHAMP, satellite |
| 相關次數: | 點閱:124 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,發展地球低軌衛星進行各項地球科學研究任務成為一項趨勢,例如CHAMP衛星、與中華三號衛星(ROCSAT-3)等,前者已於2000年成功發射升空,ROCSAT-3亦預計於2005年發射並執行其科學研究。低軌衛星的科學任務包括提昇地球重力場模式精度、探測大氣濕度與壓力變化、氣象預報與地磁時空變化等研究,為了讓上述各科學研究能順利進行,低軌衛星之軌道資訊是必要且重要的研究課題之一。
本研究利用CHAMP衛星上裝載之GPS接收器所接收之雙頻觀測量與地面上40個IGS追蹤站組成三次差分無電離層觀測量,並改正觀測量中之對流層誤差、固體潮誤差、質量中心改正、地球自轉、天線相位中心偏差等誤差量,以純幾何之動態法求定低軌衛星之短弧軌道位置。研究結果顯示短弧軌道在radial、along-track、cross-track三分量上的平均RMS值為20、20與15公分,平均3D RMS為32公分;重複軌道之三軸分量平均RMS值分別為25、17與13公分,平均3D RMS為32公分。
In recently years, there is a tendency to develop low-earth orbit(LEO)satellites, as the CAHMP lunched at 2000 and ROCSAT-3 will lunch at 2005, to process many earth sciences researches. The science projects of the LEO include earth gravity recovery, earth atmosphere temperature and pressure retrieval, weather prediction and space/time variability of the magnetic field of the earth. Determine the LEO position is one of the important and necessary task in order to carry out those researches above.
This research process the ionosphere-free triple-differenced carrier phase observation which consist of double frequency GPS observations from the GPS receiver carried on the CHAMP and 40 IGS tracking stations. Besides, the tropospheric correction model, solid earth tide correction, mass center correction of the satellite, earth rotation correction and antenna phase center correction are incorporated. Finally, determine the satellite short-arc orbit with the pure geometry, kinematic, method. The results show that the average RMS of the short-arc orbit at radial、along-track、cross-track components are 20、20 and 15 cm, and the average 3D RMS is 32 cm. The average RMS of the overlap orbit at three components are 25、17 and 13 cm and the average 3D RMS is 32 cm.
肖 峰,人造地球衛星軌道擾動理論,國防科技大學出版社,長沙,1997。
洪志偉,GPS衛星之雷射測距資料應用於大地絕對坐標之測定,國立成功大學
測量工程研究所碩士論文,台南,1998。
胡明城、魯福,現代大地測量學,測繪出版社,北京,1994。
侯瓔瑞,以Colombo經驗模式表示低軌衛星軌道擾動之分析,國立成功大學測量
工程研究所碩士論文,台南,2001。
高士杰,中華三號衛星計畫GPS掩星技術反演大氣溫度與壓力之模擬誤差分析,
國立成功大 學測量工程研究所碩士論文,台南,2000。
曾清涼,GPS衛星定位測量課程講義,國立成功大學,台南,1992。
劉佾博,近即時動態法中華三號衛星星曆之測定:使用MicroLab-1資料,國立
成功大學測量工程研究所碩士論文,台南,1999。
劉基余、李征航、王虎、桑吉章,全球定位系統原理及其應用,測繪出版社,
北京,1995。
Bevis, M., Businger, S., Chiswell, S., Herring, T., Anthes, R., Rocken, C.
and Ware, R. H., GPS Meteorology, Mapping Zenith Wet Delays onto
Precipitable Water, Journal of Applied Meteorology, Vol.33, pp.379-386,
1994.
Brinker, R. C. and Minnick, R., The Surveying Handbook, Second Edition, Chapman
& Hall, New York, 1995.
Byun, S. H., and Schutz, B. E., Improving Satellite Orbit Solution using Double-
Differenced GPS Carrier Phase in Kinematic Mode, Journal of Geodesy,
75, 533-543, 2001.
Byun, S. H., Satellite Orbit Determination using Triple-differenced GPS Carrier
Phase in Pure Kinematic Mode, Journal of Geodesy, 76, 569-585, 2003.
CDDIS website:ftp://128.183.103.97
GFZ website:http://op.gfz-potsdam.de/champ/index_CHAMP.html
Goad, C.C., and Goodman, L., A Modified Hopfield Tropospheric Refraction
Correction Model, Proceedings of the Fall Annual Meeting of the
American Geophysical Union, San Francisco California, December,
pp.12-17, 1974.
Goad, C.C.,Grejner-Brzezinska, D.A., and Yang, M., Determination of High-
precision GPS Orbit Using Triple Differencing Technique,
Journal of Geodesy, 70, 655-662, 1996.
IGS website:http://igscb.jpl.nasa.gov
Leick, A., GPS Satellite Surveying, Second Edition, John Wiley & Sons,
New York, 1995.
McCarthy, D.D., IERS Standards(1992), IERS Technical Note 13. Observatoire de
Paris, 1992.
McCarthy, D.D., IERS Standards(1996), IERS Technical Note 21. Observatoire de
Paris, 1996.
Remondi, W., B., Extending the National Geodetic Survey Standard GPS Orbit
Formats, NOAA Technical Report NOS 133 NGS 46, 1989.
Seeber, G., Satellite Geodesy: Foundations, Methods, and Application, Waler de
Gruyter, Berlin. New York, 1993.
Springer, T.A. and Beutler, G., Towards an Official IGS Orbit by Combining the
Results of All IGS Processing Centers, Proceedings of the 1993 IGS
Workshop, pp.242-249, 1993.
The Astronomical Almanac: for the Year 1994, Washington, U.S. Government
Printing Office, 1994.
Visser, P.N.A.M. and Van den Ijssel, J., GPS-based Peecise Orbit Determination
of Very Low Earth-orbiting Gravity Mission GOCE, Journal of Geodesy,
Vol .74, pp.590-602, 2000.
Wahr, J.M., The Forced Nutations of an Elliptical, Rotating, Elastic, and
Oceanless Earth, Geophysical Journal Royal Astronomical Society,
Vol.64, pp.705-727, 1981.
Yunck, T, P., Wu, S. C., Wu, J. T., and Thornton, C. L., Precise Tracking of
Remote Sensing Satellites With the Global Positioning System, IEEE
Transactions of Geoscience and Remote Sensing, Vol.28, No. 1,
pp.108-116, 1990.