簡易檢索 / 詳目顯示

研究生: 許文正
Syu, Wun-jheng
論文名稱: 油潤滑擦損磨耗微結構之觀察與模型之建立
Microstructure Observation and Model Development on Scuffing at Sliding Oil-Lubricated Contact
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 95
中文關鍵詞: 金剛石顆粒擦損磨耗微結構觀察本納細胞
外文關鍵詞: Benard-cell, scuffing wear, microstructure, diamond nanoparticles
相關次數: 點閱:49下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以含有金剛石顆粒的油精分別以不同體積百分比的方式添加於潤滑油內,調配出0、1、2及3%等四種濃度。其中上試件(vanes)為冷作工具鋼SKD11,下試件(ring)為經過熱處理之熱作工具鋼SKD61,以vanes-on-ring型式模擬活塞環於汽缸壁內的運動模式,進行油潤滑磨潤實驗。將探討濃度比例對於抗擦損(anti-scuffing)的潤滑性質,以及擦損發生之機制與擦損區域鮮少深入討論的微結構組織發生變化之原因。
    磨潤實驗均以Falex #6磨耗試驗機與Red lion數據擷取器進行,實驗中可以取得摩擦係數、潤滑油溫度及接觸電組(Electrical contact resistance)。在擦損現象發生時,劇烈的磨耗造成摩擦係數瞬間陡升的情況,並且伴隨著噪音與顫動。再由油溫的明顯略升及接觸電阻瞬間下降,加以確認擦損產生及解析發生機制。並且量測實驗前後的試件重量與表面粗度值,計算各濃度的摩擦能量(friction energy)及發生擦損的次數,探討其潤滑性質。並於擦損區域的觀察與檢測,使用光學顯微鏡(OM)及掃描式電子顯微鏡(SEM)觀察磨耗表面。以表面形貌儀(XP-2)進行擦損點的3D形貌掃描,並運用能量分散光譜分析(EDS)進行化學成分分析。為了深入暸解擦損區域的結構變化,使用聚焦離子束(FIB)以轟擊表面,使原始材料移除,達到切除功能,進行縱剖面觀察與製備TEM試片。進而利用穿透式電子顯微鏡(TEM)之明視野像(BF)和暗視野像(DF)、能量分散光譜分析(EDS)及擇區繞射圖(SAD)等功能,分別進行高解析地觀察表面結構樣貌、化學成分分析及判斷結構晶相。從這些儀器觀察與檢測,可以知道添加油精濃度對於擦損現象之關係,區別發生擦損前中後的磨耗表面差異,深入探討擦損區域的結構變化,得知擦損產生的機制與原因。
    根據實驗結果顯示,隨著添加油精濃度的增加,擦損磨耗能有效地抑制發生,整體呈現的潤滑性質於添加3 vol.%為最佳的濃度。且確認了上試件材料轉移至下試件表面的黏著磨耗,發現摩擦係數陡升後的下試件表面,因擦損磨耗於黏著物上產生磨損點,並為低於磨耗水平面之窪地區域,且偵測出碳(C)與氧(O)元素含量偏高,以及出現硫(S)元素,確認了產生化學反應。並生成一層約1~2μm厚度之非結晶結構的Fe2O3 。於窪地區域的縱深方向,觀察出α-Fe轉換γ-Fe之鐵相變化,間接驗證了窪地區域受過800℃以上高溫。最後合理地解釋擦損磨耗造成摩擦係數陡升的機制,提出ㄧ個擦損磨耗之模型。並且,在於窪地內發現規則性的洞口結構,以葛拉秀夫數(Grashcf Number)去估算發生本納細胞(benard cell)的可能性,並推論其潤滑油沸騰產生的油氣,形成本納細胞較為合理。

    Oil additive with the diamond nanoparticles which mix four kinds of concentrations has been added in oil R68. The upper specimens (vanes) were made of SKD11 alloy steel. The lower specimen (ring) was made of heat-treatment SKD61 alloy steel. The tribological test was performed in the form of vanes-on-ring under oil-lubricated condition. Discuss about how the different concentrations will effect on the anti-scuffing through reviewing the retrieved data of the whole test process. The change of microstructure was observed in the scuffing area by different kinds of analysis, such as micro figure measuring instrument, optical microscope, x-ray diffractometer, scanning electron microscopy, energy dispersive spectrometer, focused ion beam and transmission electron microscope.
    The results show that the anti-scuffing behavior and tribological properties of 3 vol.% was the best. SEM and EDX analysis revealed that the material transfer was occurred from upper specimen to the lower specimen surface. Moreover, the lap of the adhesion materials existed in the wear surface after a sudden rise in friction. EDX analysis indicated the lap region consists of Fe, O and C. In addition S is present. Reaction layer whose thickness is around 1~2 μm exists in the lap region by FIB analysis. Local EDX and TEM analysis revealed that reaction layer is an amorphous structure of Fe2O3. Electron diffraction pattern in different depth of lap region exhibits phase transformation of α-Fe into γ-Fe. It explained that the lap region had heated at high temperature and that temperature was higher than 800℃. Finally, a plausible scuffing mechanism was proposed in the research. Moreover, ordered hole structure was discovered in a lap region. Using Grashof Number to count for the possibility to occur the Benard cell and deduces the oil gas which produces this Benard cell to be reasonable.

    摘 要 I Abstract III 誌 謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號說明 XIV 第一章 緒論 1 1-2文獻回顧 2 1-2-1 固體潤滑劑添加於潤滑油 2 1-2-2 擦損(Scuffing) 4 1-2-3 磨潤後的細微分析與微結構組織觀察 6 1-3實驗背景與動機 7 1-4 論文架構 8 第二章 基本理論與研究原理 9 2-1 摩擦係數與試件幾何關係 9 2-2 潤滑模式 10 2-3 磨耗現象 11 2-4 擦損的預測模型 13 2-4-1 磨耗功率模式 13 2-4-2 磨耗功率強度模式 14 2-4-3 磨耗能量模式 14 2-5 葛拉秀夫數(Grashof Number) 15 第三章 實驗規劃 20 3-1磨潤系統的運動與機構分析 20 3-2 實驗材料與規劃 20 3-2-1 上下試件的選材 20 3-2-2 潤滑油與含有金剛石油精之調配 21 3-2-3 實驗參數設定與定義 21 3-3 實驗步驟 22 3-4 實驗設備與分析儀器 24 3-5 TEM試片製備與取樣 28 第四章 結果與討論 36 4-1 含金剛石油精添加於循環油R68的潤滑性質 36 4-1-1 摩擦係數、磨耗量與實驗參數之比較 36 4-1-2 利用摩擦能量評估油品添加油精濃度之性質 37 4-1-3 添加油精濃度對擦損現象之影響 39 4-1-4 金剛石顆粒對擦損現象之影響 40 4-2 擦損現象與摩擦係數、油溫及接觸電阻等曲線間的關係 40 4-3 探討微區擦損的成分分析與微結構觀察 42 4-3-1 能量分散光譜分析檢測擦損區域的成分分析 42 4-3-2 FIB觀察摩擦係數曲線與表面、縱剖面之差異 43 4-3-3 窪地內的微結構分析 44 4-4 擦損磨耗機制與模型建立 49 4-5 磨耗機制之現象探討 50 第五章 結論與建議 87 5-1 結論 87 5-2 建議與未來展望 88 參考文獻 90 自 述 95

    1. 喬玉林, “納米微粒的潤滑和自修復技術”, 國防工業出版社,北京, 2005.
    2. Zhang, Z.-F., Liu, W.-M., and Xue, Q.-J., “The tribological behaviors of succinimide-modified lanthanum hydroxide nanoparticles blended with zinc dialkyldithiophosphate as additives in liquid paraffin,” Wear, Vol.248, pp. 48-54, 2001.
    3. Barnes, A.M., Bartle, K.D., and Thibon, V.R.A., “A review of zinc dialkyldithiophosphates (ZDDPS): Characterisation and role in the lubricating oil,” Tribology International, Vol.34, pp. 389-395, 2001.
    4. Huq, M.Z., Aswath, P.B., and Elsenbaumer, R.L., “TEM studies of anti-wear films/wear particles generated under boundary conditions lubrication,” Tribology International, Vol.40, pp. 111-116, 2007.
    5. Liu, W. and Chen, S., “Investigation of the tribological behaviour of surface-modified ZnS nanoparticles in liquid paraffin,” Wear, Vol.238, pp. 120-124, 2000.
    6. Zhou, J., Wu, Z., Zhang, Z., Liu, W., and Dang, H., “Study on an antiwear and extreme pressure additive of surface coated LaF3 nanoparticles in liquid paraffin,” Wear, Vol.249, pp. 333-337, 2001.
    7. Li, B., Wang, X., Liu, W., and Xue, Q., “Tribochemistry and antiwear mechanism of organic-inorganic nanoparticles as lubricant additives,” Tribology Letters, Vol.22, pp. 79-84, 2006.
    8. Huang, H.D., Tu, J.P., Zou, T.Z., Zhang, L.L., and He, D.N., “Friction and wear properties of IF-MoS2 as additive in paraffin oil,” Tribology Letters, Vol.20, pp. 247-250, 2005.
    9. Wu, Y.Y., Tsui, W.C., and Liu, T.C., “Experimental analysis of tribological properties of lubricating oils with nanoparticle additives,” Wear, Vol.262, pp. 819-825, 2007.
    10. Rapoport, L., Leshchinsky, V., Lapsker, I., Volovik, Y., Nepomnyashchy, O., Lvovsky, M., Popovitz-Biro, R., Feldman, Y., and Tenne, R., “Tribological properties of WS2 nanoparticles under mixed lubrication,” Wear, Vol.255, pp. 785-793, 2003.
    11. Rapoport, L., Feldman, Y., Homyonfer, M., Cohen, H., Sloan, J., Hutchison, J.L., and Tenne, R., “Inorganic fullerene-like material as additives to lubricants: Structure-function relationship,” Wear, Vol.225-229, pp. 975-982, 1999.
    12. Rapoport, L., Leshchinsky, V., Lvovsky, M., Lapsker, I., Volovik, Y., Feldman, Y., Popovitz-Biro, R., and Tenne, R., “Superior tribological properties of powder materials with solid lubricant nanoparticles,” Wear, Vol.255, pp. 794-800, 2003.
    13. Rapoport, L., Nepomnyashchy, O., Lapsker, I., Verdyan, A., Moshkovich, A., Feldman, Y., and Tenne, R., “Behavior of fullerene-like WS2 nanoparticles under severe contact conditions,” Wear, Vol.259, pp. 703-707, 2005.
    14. Qiu, S., Zhou, Z., Dong, J., and Chen, G., “Preparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oils,” Journal of Tribology, Vol.123, pp. 441-443, 2001.
    15. Tao, X., Jiazheng, Z., and Kang, X., “Ball-bearing effect of diamond nanoparticles as an oil additive,” Journal of Physics D: Applied Physics, Vol.29, pp. 2932-2937, 1996.
    16. Markov, D. and Kelly, D., “Mechanisms of adhesion-initiated catastrophic wear: Pure sliding,” Wear, Vol.239, pp. 189-210, 2000.
    17. Carper, H.J. and Ku, P.M., “Thermal and scuffing behavior of disks in sliding-rolling contact,” Electronic Design, Vol.9, 1974.
    18. Czichos, H., “Failure Criteria in Thin Film Lubrication : The concept of a failure surface,” Tribology International, Vol.7, pp. 14-20, 1974.
    19. Jackson, A., Webster, M.N., and Enthoven, J.C., “Effect of lubricant traction on scuffing,” Tribology Transactions, Vol.37, pp. 387-395, 1994.
    20. Piekoszewski, W., Szczerek, M., and Tuszynski, W., “The action of lubricants under extreme pressure conditions in a modified four-ball tester,” Wear, Vol.249, pp. 188-193, 2001.
    21. Grew, W.J.S. and Cameron, A., “Thermodynamics of Boundary Lubrication and scuffing,” Proc. Roy. Soc. Lond. A., Vol.327, pp. 47-59, 1972.
    22. Lee, S.C. and Cheng, H.S., “Scuffing theory modeling and experimental correlations,” ASME Journal of Tribology, Vol.113, pp. 327-334, 1991.
    23. Lee, S.C. and Chen, H., “Experimental validation of critical temperature-pressure theory of scuffing,” Tribology Transactions, Vol.38, pp. 738-742, 1995.
    24. Cogdell, J.D., Dawson, M.C., Murray, S.F., and Ling, F.F., “Surface texture effects in thin film lubrication of steel by silicones,” ASLE Transactions, Vol.30, pp. 141-148, 1987.
    25. Park, K.B. and Ludema, K.C., “Evaluation of the plasticity index as a scuffing criterion,” Wear, Vol.175, pp. 123-131, 1994.
    26. Kelly, D.A., Barnes, C.G., Freeman, R.W., and Critchlow, G.W., “Running-in and the enhancement of scuffing resistance,” Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science, Vol.206, pp. 425-429, 1992.
    27. Wolff, R., “The influence of surface roughness texture on the temperature and scuffing in sliding contact,” Wear, Vol.143, pp. 99-118, 1991.
    28. Sundh, J. and Satra, U.S.a., “Influence of surface topography and surface modifications on seizure initiation in lean lubricated sliding contacts,” Wear, Vol.262, pp. 986-995, 2007.
    29. Bowman, W.F. and Stachowiak, G.W., “A review of scuffing models,” Tribology Letters, Vol.2, pp. 113-131, 1996.
    30. Ludema, K.C., “A review of scuffing and running-in of lubricated surfaces, with asperities and oxides in perspective,” Wear, Vol.100, pp. 315-331, 1984.
    31. Dyson, A., “Scuffing-a review, Part 1 and Part 2,” Tribology International, Vol.8, pp. 77-87,117-122, 1975.
    32. Blok, H., “Theoretical study of temperature rise at surfaces of actual contact under oiliness lubricating conditions,” Inst.Mech. Engrs., Vol.2, pp. 222-235, 1937.
    33. Matveevsky, R.M., “The critical temperature of oils with point and line contacts,” J. Basic. Eng., Vol.83, pp. 754-760, 1965.
    34. Matveevsky, R.M., “Friction power as a criterion of seizure with sliding lubricated contact,” Wear, Vol.155, pp. 1-5, 1992.
    35. Horng, J.H., Lin, J.F., and Li, K.Y., “Scuffing as evaluated from the viewpoint of surface roughness and friction energy,”ASME Journal of Tribology, Vol.118, pp. 669-675, 1996.
    36. Zhang, C., Cheng, H.S., and Wang, Q.J., “Scuffing behavior of piston-pin/bore bearing in mixed Lubrication-Part II: Scuffing mechanism and failure criterion,” Tribology Transactions, Vol.47, pp. 149-156, 2004.
    37. Hershberger, J., Ajayi, O.O., Zhang, J., Yoon, H., and Fenske, G.R., “Formation of austenite during scuffing failure of SAE 4340 steel,” Wear, Vol.256, pp. 159-167, 2004.
    38. Ajayi, O.O., Hersberger, J.G., Zhang, J., Yoon, H., and Fenske, G.R., “Microstructural evolution during scuffing of hardened 4340 steel - Implication for scuffing mechanism,” Tribology International, Vol.38, pp. 277-282, 2005.
    39. Hershberger, J., Ajayi, O.O., Zhang, J., Yoon, H., and Fenske, G.R., “Evidence of scuffing initiation by adiabatic shear instability,” Wear, Vol.258, pp. 1471-1478, 2005.
    40. Evans, R.D., More, K.L., Darragh, C.V., and Nixon, H.P., “Transmission electron microscopy of boundary-lubricated bearing surfaces. Part II: Mineral oil lubricant with sulfur- and phosphorus-containing gear oil additives,” Tribology Transactions, Vol.48, pp. 299-307, 2005.
    41. Evans, R.D., More, K.L., Darragh, C.V., and Nixon, H.P., “Transmission electron microscopy of boundary-lubricated bearing surfaces. Part I: Mineral oil lubricant,” Tribology Transactions, Vol.47, pp. 430-439, 2004.
    42. Li, J., Elmadagli, M., Gertsman, V.Y., Lo, J., and Alpas, A.T., “FIB and TEM characterization of subsurfaces of an Al-Si alloy (A390) subjected to sliding wear,” Materials Science and Engineering A, Vol.421, pp. 317-327, 2006.
    43. Reichelt, M., Weirich, T.E., Mayer, J., Wolf, T., Loos, J., Gold, P.W., and Fajfrowski, M., “TEM and nanomechanical studies on tribological surface modifications formed on roller bearings under controlled lubrication conditions,” Journal of Materials Science, Vol.41, pp. 4543-4553, 2006.
    44. Edrisy, A., Perry, T., and Alpas, A.T., “Investigation of scuffing damage in aluminum engines with thermal spray coatings,” Wear, Vol.259, pp. 1056-1062, 2005.
    45. 朱孝業,“含固體潤滑劑之鋁基複合材料在往復式運動不同潤滑條件下磨潤性能分析”,國立成功大學機械工程系,博士論文,2001.
    46 溫詩鑄,“納米摩擦學”,清華大學出版社,北京, 1998.
    47. 林榮盛,“潤滑學”, 全華科技圖書股份有限公司,台北, 1990.
    48. Hamrock, B.J., “Fundamentals of Fluid Film Lubrication”, McGraw-Hill, New York, 1994.
    49. F. P. Bowdon, D.T., “The Friction and Lubrication of Solids Part II,” Oxford University Press, 1964.
    50. Kalpakjian, S., “機械製造”,文京圖書有限公司,台灣, 1998.
    51. Meng, V.V., “The investigation of steel seizure with disc machine,” Friction and Wear of Machines, Vol.14, pp. 222-237, 1960.
    52. 洪政豪, “表面粗度對線接觸物體之磨潤性能影響及數學模式建立研究”, 國立成功大學機械工程系, 博士論文, 1995.
    53. Holman, J.P., “Heat Transfer,” McGraw-Hill, New York, p337, 2002.
    54. Benard, H., “Tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en regime permanent,” Ann. Chim. Phys., Vol.23, pp. 62-144, 1901.
    55. Zyvex Instruments, http://www.zyvex.com/Products/TEMS_001a.htm.
    56. Preston, F.W., “The theory and design of plate glass polishing machine,” Journal of the Society of Glass Technology, Vol.11, pp. 214-256, 1927.
    57. Horng, J.H., “True friction power intensity and scuffing in sliding contacts,” ASME Journal of Tribology, Vol.120, pp. 829-834, 1998.
    58. 金重勳, “熱處理”,復文書局,台南市, p8, 1998.
    59. Korobenko, V.N., Agranat, M.B., Ashitkov, S.I., and Savvatimskiy, A.I., “Zirconium and iron densities in a wide range of liquid states,” International Journal of Thermophysics, Vol.23, pp. 307-318, 2002.
    60. Assael, M.J., Kakosimos, K., Banish, R.M., Brillo, J., Egry, I., Brooks, R., Quested, P.N., Mills, K.C., Nagashima, A., Sato, Y., and Wakeham, W.A., “Reference data for the density and viscosity of liquid aluminum and liquid iron,” Journal of Physical and Chemical Reference Data, Vol.35, pp. 285-300, 2006.
    61. 石油情報出版社, http://www.oil.net.tw/pip/lbg2006/chapter/3-1.htm.
    62. Stachowiak, G.W. and Batchelor, A.W., “Engineering Tribology,” Elsevier Science, New York, p15, 1993.

    下載圖示 校內:2009-07-23公開
    校外:2009-07-23公開
    QR CODE