| 研究生: |
蘇郁雅 Su, Yu-Ya |
|---|---|
| 論文名稱: |
台灣原生種白花蝴蝶蘭粒線體基因組的分析 Analysis of the mitochondrial genome in Phalaenopsis aphrodite subsp. formosana |
| 指導教授: |
張清俊
Chang, Ching-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 次世代定序 、粒線體基因組 |
| 外文關鍵詞: | mitochondrial genomes, next generation sequencing |
| 相關次數: | 點閱:120 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣白花蝴蝶蘭(Phalaenopsis aphrodite subsp. formosana)為台灣原生種,在野外瀕臨絕種的植物,但在蝴蝶蘭育種上為一重要親本。本研究分析台灣白花蝴蝶蘭粒線體的基因組成。藉由抽取白花蝴蝶蘭的花部組織,經由Percoll梯度純化粒線體後,再純化粒線體DNA,利用Roche 454 GS junior pyrosequencing方式定序建構的shot-gun和8 kb mate-paired基因庫,並利用Illumina方式定序建構的shot-gun和5 kb mate-paired基因庫,而後將由這些基因庫定序出的片段(reads)進一步組裝成更長的序列,總共得到34條粒線體DNA序列,總長為682 kb,GC含量為44.7%、重複性序列佔總長的34.35%、轉座子佔5.36%。並註解出39個蛋白質編碼基因、3個rRNA、14個tRNA。蛋白質編碼基因佔mtDNA總長的6.9%,粒線體DNA含有來自葉綠體及細胞核DNA的序列,其分別佔2.1%與0.8%。利用單子葉植物與阿拉伯芥的粒線體基因組共同擁有的26個基因畫出演化親緣關係圖顯示出,白花蝴蝶蘭與大部分的禾本科植物可形成一群。
The moth orchid, P. aphrodite subsp. formosana is the endemic species in Taiwan. The mitochondrial DNA (mtDNA) was isolated from the floral tissues of moth orchid by percoll gradient. Subsequently, the mtDNA was sequenced through next generation sequencing (NGS). Up to date, 34 potentially mtDNA containing contigs accounting for approximately 682 kb in length were obtained. The GC content of mtDNA is 44.7%. By BLAST mtDNA to NCBI database, 39 protein coding genes, 3 rRNA and 14 tRNA genes specific to mitochondria were annotated. In addition, phylogenetic analysis based on the concatenation of 26 common mitochondrial protein coding genes among monocots and Arabidopsis, the moth orchid could be clustered with most of plants in grass family.
李玠瑩,研發蝴蝶蘭葉綠體微衛星分子標誌及其應用之研究,國立成功大學生命科學研究所碩士論文,2008。
吳紀瑄,台灣原生種白花蝴蝶蘭粒線體基因表現之分析,國立成功大學生物科技所碩士論文,2014。
林伯彥,開發蝴蝶蘭胞器DNA的分子標誌,國立成功大學生物科技所碩士論文,2014。
劉育彰,台灣原生種姬蝴蝶蘭粒線體基因組的分析,國立成功大學生物科技研究所碩士論文,2011。
鄭丞峰,兩種台灣原生種蝴蝶蘭(台灣阿嬤與姬蝴蝶蘭)葉綠體基因體之比較分析,國立成功大學生物科技所碩士論文,2010。
Adams, K.L., Qiu, Y.L., Stoutemyer, M., and Palmer, J.D. Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proceedings of the National Academy of Sciences of the United States of America 99, 9905-9912, 2002.
Allen, J.O., Fauron, C.M., Minx, P., Roark, L., Oddiraju, S., Lin, G.N., Meyer, L., Sun, H., Kim, K., Wang, C., Du, F., Xu, D., Gibson, M., Cifrese, J., Clifton, S.W., and Newton, K.J. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177, 1173-1192, 2007.
Alverson, A.J., Rice, D.W., Dickinson, S., Barry, K., and Palmer, J.D. Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber. Plant Cell 23, 2499-2513, 2011a.
Alverson, A.J., Wei, X., Rice, D.W., Stern, D.B., Barry, K., and Palmer, J.D. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Molecular Biology and Evolution 27, 1436-1448, 2010.
Alverson, A.J., Zhuo, S., Rice, D.W., Sloan, D.B., and Palmer, J.D. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. PLoS One 6, e16404, 2011b.
Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, M.H., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith, A.J., Staden, R., and Young, I.G. Sequence and organization of the human mitochondrial genome. Nature 290, 457-465, 1981.
Bartoszewski, G., Gawronski, P., Szklarczyk, M., Verbakel, H., and Havey, M.J. A one-megabase physical map provides insights on gene organization in the enormous mitochondrial genome of cucumber. Genome 52, 299-307, 2009.
Billoski, T.V. Debate II. Science 77, 5-6, 1993.
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton j, Brown CG, et al. Accurate whole human genome sequencing using reversible teminator chemistry. Nature 456, 53-59, 2008
Bowsher, C.G., and Tobin, A.K. Compartmentation of metabolism within mitochondria and plastids. Journal of Experimental Botany 52, 513-527, 2001.
Chang, C.C., Lin, H.C., Lin, I.P., Chow, T.Y., Chen, H.H., Chen, W.H., Cheng, C.H., Lin, C.Y., Liu, S.M., Chang, C.C., and Chaw, S.M. The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Molecular Biology and Evolution 23, 279-291, 2006.
Chang, S., Wang, Y., Lu, J., Gai, J., Li, J., Chu, P., Guan, R., and Zhao, T. The mitochondrial genome of soybean reveals complex genome structures and gene evolution at intercellular and phylogenetic levels. PLoS One 8, e56502, 2013.
Chang, S., Yang, T., Du, T., Huang, Y., Chen, J., Yan, J., He, J., and Guan, R. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica. Biomed Central Genomics 12, 497-508, 2011.
Chaw, S.M., Shih, A.C., Wang, D., Wu, Y.W., Liu, S.M., and Chou, T.Y. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Molecular Biology and Evolution 25, 603-615, 2008.
Chen, J., Guan, R., Chang, S., Du, T., Zhang, H., and Xing, H. Substoichiometrically different mitotypes coexist in mitochondrial genomes of Brassica napus L. PLoS One 6, e17662, 2011.
Christensen, A.C. Plant mitochondrial genome evolution can be explained by DNA repair mechanisms. Genome Biology and Evolution 5, 1079-1086, 2013.
Clifton, S.W., Minx, P., Fauron, C.M., Gibson, M., Allen, J.O., Sun, H., Thompson, M., Barbazuk, W.B., Kanuganti, S., Tayloe, C., Meyer, L., Wilson, R.K., and Newton, K.J. Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiology 136, 3486-3503, 2004.
Cole, T.E., Hong, Y., Brasier, C.M., and Buck, K.W. Detection of an RNA-dependent RNA polymerase in mitochondria from a mitovirus-infected isolate of the Dutch Elm disease fungus, Ophiostoma novo-ulmi. Virology 268, 239-243, 2000.
Cozzolino, S., and Widmer, A. Orchid diversity: an evolutionary consequence of deception? Trends Ecology Evolution 20, 487-494, 2005.
Cuenca, A., Petersen, G., and Seberg, O. The complete sequence of the mitochondrial genome of Butomus umbellatus--a member of an early branching lineage of monocotyledons. PLoS One 8, e61552, 2013.
Cui, P., Liu, H., Lin, Q., Ding, F., Zhuo, G., Hu, S., Liu, D., Yang, W., Zhan, K., Zhang, A., and Yu, J. A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants. Journal Genetics 88, 299-307, 2009.
Darracq, A., Varre, J.S., Marechal-Drouard, L., Courseaux, A., Castric, V., Saumitou-Laprade, P., Oztas, S., Lenoble, P., Vacherie, B., Barbe, V., and Touzet, P. Structural and content diversity of mitochondrial genome in beet: a comparative genomic analysis. Genome Biology Evolution 3, 723-736, 2011.
Fajardo, D., Schlautman, B., Steffan, S., Polashock, J., Vorsa, N., and Zalapa, J. The American cranberry mitochondrial genome reveals the presence of selenocysteine (tRNA-Sec and SECIS) insertion machinery in land plants. Gene 536, 336-343, 2014.
Fang, Y., Wu, H., Zhang, T., Yang, M., Yin, Y., Pan, L., Yu, X., Zhang, X., Hu, S., Al-Mssallem, I.S., and Yu, J. A Complete Sequence and Transcriptomic Analyses of Date Palm (Phoenix dactylifera L.) Mitochondrial Genome. PLoS One 7, e37164, 2012a.
Fang, Y., Wu, H., Zhang, T., Yang, M., Yin, Y., Pan, L., Yu, X., Zhang, X., Hu, S., Al-Mssallem, I.S., and Yu, J. A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome. PLoS One 7, e37164, 2012b.
Fauron, C., Casper, M., Gao, Y., and Moore, B. The maize mitochondrial genome: dynamic, yet functional. Trends in Genetics 11, 228-235, 1995a.
Fauron, C., Casper, M., Gao, Y., and Moore, B. The maize mitochondrial genome: dynamic, yet functional. Trends Genetics 11, 228-235, 1995b.
Fujii, S., Kazama, T., Yamada, M., and Toriyama, K. Discovery of global genomic re-organization based on comparison of two newly sequenced rice mitochondrial genomes with cytoplasmic male sterility-related genes. Biomed Central Genomics 11, 209-215, 2010.
Giege, P., and Brennicke, A. RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proceedings of the National Academy of Sciences of the United States of America 96, 15324-15329, 1999.
Goremykin, V.V., Lockhart, P.J., Viola, R., and Velasco, R. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants. The Plant Journal 71, 615-626, 2012.
Goremykin, V.V., Salamini, F., Velasco, R., and Viola, R. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Molecular Biology and Evolution 26, 99-110, 2009.
Handa, H. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Research 31, 5907-5916, 2003.
Hiesel, R., Combettes, B., and Brennicke, A. Evidence for RNA editing in mitochondria of all major groups of land plants except the Bryophyta. Proceedings of the National Academy of Sciences of the United States of America 91, 629-633, 1994.
Hsiao, Y.-Y., Jeng, M.-F., Tsai, W.-C., Chuang, Y.-C., Li, C.-Y., Wu, T.-S., Kuoh, C.-S., Chen, W.-H., and Chen, H.-H. A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2–4D motif. The Plant Journal 55, 719-733, 2008.
Hsiao, Y.Y., Tsai, W.C., Kuoh, C.S., Wang, H.C., Wu, T.S., Leu, Y.L., Chen, W.H., and Chen, H.H. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. Biomed Central Plant Biology 6, 14-20, 2006.
Hsu, C.C., Chung, Y.L., Chen, T.C., Lee, Y.L., Kuo, Y.T., Tsai, W.C., Hsiao, Y.Y., Chen, Y.W., Wu, W.L., and Chen, H.H. An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. Biomed Central Plant Biology 11, 3-10, 2011.
Iorizzo, M., Senalik, D., Szklarczyk, M., Grzebelus, D., Spooner, D., and Simon, P. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome. Biomed Central Plant Biology 12, 61-70, 2012.
JaneČKa, J.E., Grassman, L.I., Honeycutt, R.L., and Tewes, M.E. Whole Genome Amplification for Sequencing and Applications in Conservation Genetics. Journal of Wildlife Management 71, 1357-1360, 2007.
Jheng, C.F., Chen, T.C., Lin, J.Y., Chen, T.C., Wu, W.L., and Chang, C.C. The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids. Plant Science 190, 62-73, 2012.
Knoop, V., Unseld, M., Marienfeld, J., Brandt, P., Sunkel, S., Ullrich, H., and Brennicke, A. copia-, gypsy- and LINE-like retrotransposon fragments in the mitochondrial genome of Arabidopsis thaliana. Genetics 142, 579-585, 1996.
Kohany, O., Gentles, A.J., Hankus, L., and Jurka, J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. Biomed Central Bioinformatics 7, 474-480, 2006.
Kubo, T., and Newton, K.J. Angiosperm mitochondrial genomes and mutations. Mitochondrion 8, 5-14, 2008.
Kubo, T., Nishizawa, S., Sugawara, A., Itchoda, N., Estiati, A., and Mikami, T. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Research 28, 2571-2576, 2000.
Kumar, A., and Bennetzen, J.L. Plant retrotransposons. Annual Review Genetics 33, 479-532, 1999.
Kurtz, S., Choudhuri, J.V., Ohlebusch, E., Schleiermacher, C., Stoye, J., and Giegerich, R. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research 29, 4633-4642, 2001.
Lagesen, K., Hallin, P., Rodland, E.A., Staerfeldt, H.H., Rognes, T., and Ussery, D.W. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research 35, 3100-3108, 2007.
Lang, E.G., Mueller, S.J., Hoernstein, S.N., Porankiewicz-Asplund, J., Vervliet-Scheebaum, M., and Reski, R. Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as the basis for sub-cellular proteomics. Plant Cell Reports 30, 205-215, 2011.
Li, L., Wang, B., Liu, Y., and Qiu, Y.L. The complete mitochondrial genome sequence of the hornwort Megaceros aenigmaticus shows a mixed mode of conservative yet dynamic evolution in early land plant mitochondrial genomes. Journal Molecular Evolution 68, 665-678, 2009.
Liu, Y., Wang, B., Cui, P., Li, L., Xue, J.Y., Yu, J., and Qiu, Y.L. The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants. PLoS One 7, e35168, 2012.
Liu, Y., Xue, J.Y., Wang, B., Li, L., and Qiu, Y.L. The mitochondrial genomes of the early land plants Treubia lacunosa and Anomodon rugelii: dynamic and conservative evolution. PLoS One 6, e25836, 2011.
Lowe, T.M., and Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25, 955-964, 1997.
Mackenzie, S., and McIntosh, L. Higher plant mitochondria. Plant Cell 11, 571-585, 1999.
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA. Genome sequencing in open microfabricated high density picoliter reactors. Natue 437, 376-380, 2005.
Mackenzie, S.A. Plant organellar protein targeting: a traffic plan still under construction. Trends Cell Biology 15, 548-554, 2005.
Marienfeld, J., Unseld, M., and Brennicke, A. The mitochondrial genome of Arabidopsis is composed of both native and immigrant information. Trends Plant Science 4, 495-502, 1999.
McCauley, D.E., and Olson, M.S. Do recent findings in plant mitochondrial molecular and population genetics have implications for the study of gynodioecy and cytonuclear conflict? Evolution 62, 1013-1025, 2008.
Mower, J., Sloan, D., and Alverson, A. The Genomics Revolution. Plant Mitochondrial Genome Diversity, Springer, Nebraska, 123-144, 2012a.
Mower, J.P., Case, A.L., Floro, E.R., and Willis, J.H. Evidence against Equimolarity of Large Repeat Arrangements and a Predominant Master Circle Structure of the Mitochondrial Genome from a Monkeyflower (Mimulus guttatus) Lineage with Cryptic CMS. Genome Biology Evolution 4, 670-686, 2012b.
Naito, K., Kaga, A., Tomooka, N., and Kawase, M. De novo assembly of the complete organelle genome sequences of azuki bean (Vigna angularis) using next-generation sequencers. Breed Science 63, 176-182, 2013.
Negruk, V. Mitochondrial Genome Sequence of the Legume Vicia faba. Front Plant Science 4, 128, 2013.
Notsu, Y., Masood, S., Nishikawa, T., Kubo, N., Akiduki, G., Nakazono, M., Hirai, A., and Kadowaki, K. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Molecular Genetics Genomics 268, 434-445, 2002.
O'Kane, S.L., Jr., and Al-Shehbaz, I.A. A Synopsis of Arabidopsis (Brassicaceae). Novon 7, 323-327, 1997.
Oda, K., Yamato, K., Ohta, E., Nakamura, Y., Takemura, M., Nozato, N., Akashi, K., Kanegae, T., Ogura, Y., Kohchi, T., and et al. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. Journal Molecular Biology 223, 1-7, 1992.
Ogihara, Y., Yamazaki, Y., Murai, K., Kanno, A., Terachi, T., Shiina, T., Miyashita, N., Nasuda, S., Nakamura, C., Mori, N., Takumi, S., Murata, M., Futo, S., and Tsunewaki, K. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Research 33, 6235-6250, 2005.
Palmer, J.D., Adams, K.L., Cho, Y., Parkinson, C.L., Qiu, Y.L., and Song, K. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proceedings of the National Academy of Sciences of the United States of America 97, 6960-6966, 2000.
Rice, D.W., Alverson, A.J., Richardson, A.O., Young, G.J., Sanchez-Puerta, M.V., Munzinger, J., Barry, K., Boore, J.L., Zhang, Y., dePamphilis, C.W., Knox, E.B., and Palmer, J.D. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342, 1468-1473, 2013.
Richardson, A.O., Rice, D.W., Young, G.J., Alverson, A.J., and Palmer, J.D. The "fossilized" mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate. Biomed Central Biology 11, 29-35, 2013.
Rivarola, M., Foster, J.T., Chan, A.P., Williams, A.L., Rice, D.W., Liu, X., Melake-Berhan, A., Huot Creasy, H., Puiu, D., Rosovitz, M.J., Khouri, H.M., Beckstrom-Sternberg, S.M., Allan, G.J., Keim, P., Ravel, J., and Rabinowicz, P.D. Castor Bean Organelle Genome Sequencing and Worldwide Genetic Diversity Analysis. PLoS One 6, e21743, 2011.
Rodriguez-Moreno, L., Gonzalez, V.M., Benjak, A., Marti, M.C., Puigdomenech, P., Aranda, M.A., and Garcia-Mas, J. Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin. Biomed Central Genomics 12, 424-430, 2011.
Salinas, T., Duchene, A.M., Delage, L., Nilsson, S., Glaser, E., Zaepfel, M., and Marechal-Drouard, L. The voltage-dependent anion channel, a major component of the tRNA import machinery in plant mitochondria. Proceedings of the National Academy of Sciences of the United States of America 103, 18362-18367, 2006.
Schiestl, F.P., Peakall, R., Mant, J.G., Ibarra, F., Schulz, C., Franke, S., and Francke, W. The Chemistry of Sexual Deception in an Orchid-Wasp Pollination System. Science 302, 437-438, 2003.
Selosse, M.-A., Albert, B., and Godelle, B. Reducing the genome size of organelles favours gene transfer to the nucleus. Trends in Ecology and Evolution 16, 135-141, 2001.
Serres-Giardi, L., Belkhir, K., David, J., and Glemin, S. Patterns and evolution of nucleotide landscapes in seed plants. Plant Cell 24, 1379-1397, 2012.
Sloan, D.B., Alverson, A.J., Chuckalovcak, J.P., Wu, M., McCauley, D.E., Palmer, J.D., and Taylor, D.R. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biology 10, e1001241, 2012.
Sloan, D.B., Alverson, A.J., Storchova, H., Palmer, J.D., and Taylor, D.R. Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. Biomed Central Evolution Biology 10, 274-281, 2010.
Smith, D.R., Burki, F., Yamada, T., Grimwood, J., Grigoriev, I.V., Van Etten, J.L., and Keeling, P.J. The GC-rich mitochondrial and plastid genomes of the green alga Coccomyxa give insight into the evolution of organelle DNA nucleotide landscape. PLoS One 6, e23624, 2011.
Smith, D.R., and Lee, R.W. Mitochondrial genome of the colorless green alga Polytomella capuana: a linear molecule with an unprecedented GC content. Molecular Biology Evolution 25, 487-496, 2008.
Sommer, D.D., Delcher, A.L., Salzberg, S.L., and Pop, M. Minimus: a fast, lightweight genome assembler. Biomed Central Bioinformatics 8, 64-71, 2007.
Stern, D.B., and Lonsdale, D.M. Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299, 698-702, 1982.
Straub, S.C., Cronn, R.C., Edwards, C., Fishbein, M., and Liston, A. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (apocynaceae). Genome Biology Evolution 5, 1872-1885, 2013.
Su, C.L., Chao, Y.T., Yen, S.H., Chen, C.Y., Chen, W.C., Chang, Y.C., and Shih, M.C. Orchidstra: an integrated orchid functional genomics database. Plant Cell Physiology 54, e11, 2013.
Sugiyama, Y., Watase, Y., Nagase, M., Makita, N., Yagura, S., Hirai, A., and Sugiura, M. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Molecular Genetics Genomics 272, 603-615, 2005.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology Evolution 28, 2731-2739, 2011.
Tanaka, Y., Tsuda, M., Yasumoto, K., Yamagishi, H., and Terachi, T. A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.). Biomed Central Genomics 13, 352-360, 2012.
Terasawa, K., Odahara, M., Kabeya, Y., Kikugawa, T., Sekine, Y., Fujiwara, M., and Sato, N. The mitochondrial genome of the moss Physcomitrella patens sheds new light on mitochondrial evolution in land plants. Molecular Biology Evolution 24, 699-709, 2007.
Tian, X., Zheng, J., Hu, S., and Yu, J. The rice mitochondrial genomes and their variations. Plant Physiology 140, 401-410, 2006.
Tremblay, R.L., Ackerman, J.D., Zimmerman, J.K., and Calvo, R.N. Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biological Journal of the Linnean Society 84, 1-54, 2005.
Tsai, W.-C., Kuoh, C.-S., Chuang, M.-H., Chen, W.-H., and Chen, H.-H. Four DEF-Like MADS Box Genes Displayed Distinct Floral Morphogenetic Roles in Phalaenopsis Orchid. Plant and Cell Physiology 45, 831-844, 2004.
Tsai, W.-C., Lee, P.-F., Chen, H.-I., Hsiao, Y.-Y., Wei, W.-J., Pan, Z.-J., Chuang, M.-H., Kuoh, C.-S., Chen, W.-H., and Chen, H.-H. PeMADS6, a GLOBOSA/PISTILLATA-like Gene in Phalaenopsis equestris Involved in Petaloid Formation, and Correlated with Flower Longevity and Ovary Development. Plant and Cell Physiology 46, 1125-1139, 2005.
Tsai, W.C., Fu, C.H., Hsiao, Y.Y., Huang, Y.M., Chen, L.J., Wang, M., Liu, Z.J., and Chen, H.H. OrchidBase 2.0: comprehensive collection of Orchidaceae floral transcriptomes. Plant Cell Physiology 54, e7, 2013.
Tupac Otero, J., and Flanagan, N.S. Orchid diversity – beyond deception. Trends in Ecology and Evolution 21, 64-65, 2006.
Turmel, M., Otis, C., and Lemieux, C. The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proceedings of the National Academy of Sciences of the United States of America 99, 11275-11280, 2002a.
Turmel, M., Otis, C., and Lemieux, C. The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants. Molecular Biology Evolution 19, 24-38, 2002b.
Turmel, M., Otis, C., and Lemieux, C. The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Plant Cell 15, 1888-1903, 2003.
Turmel, M., Otis, C., and Lemieux, C. An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus. Biomed Central Genomics 8, 137-140, 2007.
Turmel, M., Otis, C., and Lemieux, C. Tracing the evolution of streptophyte algae and their mitochondrial genome. Genome Biology Evolution 5, 1817-1835, 2013.
Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, McKeran, Sidow A, Fire A, Johnson SM. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome 18, 1051-1063, 2008.
Wang, B., Xue, J., Li, L., Liu, Y., and Qiu, Y.L. The complete mitochondrial genome sequence of the liverwort Pleurozia purpurea reveals extremely conservative mitochondrial genome evolution in liverworts. Current Genetics 55, 601-609, 2009.
Wang, C.-Y., Chiou, C.-Y., Wang, H.-L., Krishnamurthy, R., Venkatagiri, S., Tan, J., and Yeh, K.-W. Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta 227, 1063-1077, 2008.
Wang, W., Wu, Y., and Messing, J. The mitochondrial genome of an aquatic plant, Spirodela polyrhiza. PLoS One 7, e46747, 2012.
Winkler, M., and Kuck, U. The group IIB intron from the green alga Scenedesmus obliquus mitochondrion: molecular characterization of the in vitro splicing products. Current Genetics 20, 495-502, 1991.
Wolfe, K.H., Li, W.H., and Sharp, P.M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences of the United States of America 84, 9054-9058, 1987.
Xi, Z., Wang, Y., Bradley, R.K., Sugumaran, M., Marx, C.J., Rest, J.S., and Davis, C.C. Massive mitochondrial gene transfer in a parasitic flowering plant clade. PLoS Genetics 9, e1003265, 2013.
Xue, J.Y., Liu, Y., Li, L., Wang, B., and Qiu, Y.L. The complete mitochondrial genome sequence of the hornwort Phaeoceros laevis: retention of many ancient pseudogenes and conservative evolution of mitochondrial genomes in hornworts. Current Genetics 56, 53-61, 2010.
Yu, H., and Goh, C.J. Molecular Genetics of Reproductive Biology in Orchids. Plant Physiology 127, 1390-1393, 2001.
Zhang, T., Zhang, X., Hu, S., and Yu, J. An efficient procedure for plant organellar genome assembly, based on whole genome data from the 454 GS FLX sequencing platform. Plant Methods 7, 38-45, 2011.
Zhu, A., Guo, W., Jain, K., and Mower, J.P. Unprecedented Heterogeneity in the Synonymous Substitution Rate within a Plant Genome. Molecular Biology Evolution, 1228-1236, 2014.