簡易檢索 / 詳目顯示

研究生: 余健豪
Yu, Jian-Hao
論文名稱: 含重疊電雙層效應之純擠壓彈液動潤滑分析
Pure Squeeze Elastohydrodynamic Lubrication (EHL) Analysis Considering the Effects of Overlapped Electrical Double Layer (EDL)
指導教授: 李旺龍
Li, Wang-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 152
中文關鍵詞: 水基潤滑液重疊電雙層純擠壓彈液動潤滑電導率變化
外文關鍵詞: water-based lubricants, overlapped electrical double layer, pure squeeze elastohydrodynamic lubrication, variable electric conductivity
相關次數: 點閱:146下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代工業發展開始往環保走向進展,以往機械元件為了要耐受嚴苛環境,常會在兩接觸元件間加入潤滑液以避免元件表面的直接接觸,且多為油基潤滑液。如今因應環保需求,已有水基潤滑液研究的發展,如此一來,以水基潤滑劑搭配特定接觸材料所引發的電雙層(Electrical double layer)效應對彈液動潤滑(Elastohydrodynamic lubrication)的影響勢必需更進一步探討。
    本研究模擬一剛球擠壓陶瓷基材耦合電解質溶液潤滑膜系統,針對定負載下兩接觸偶在擠壓過程中的彈液動變化,利用有限元素法耦合Reynolds方程式(Reynolds equation)、線性彈性方程式以及負載平衡方程式,分析擠壓過程中電雙層效應對潤滑液膜的暫態壓力、膜厚、彈性變形的影響。
    經模擬後分析其結果得知:當邊界電位上升,視黏度(Apparent viscosity)效應也提高,並在膜厚越小時越明顯。而楊氏模數(Young’s modulus)越大,視黏度效應也越大,相同擠壓時間下所承受壓力也越大,膜厚則因彈性變形程度較小而較薄。相同材料下負載大者反抗液膜阻力較大,擠壓速度快速下降,壓力趨近Hertz壓力分布,膜厚也較大。重疊電雙層情況下邊界正負離子濃度分布極度不均,邊界電位越大越明顯。而在加入電導率變化後,視黏度效應下降,最終膜厚也降低,但壓力變化受電導率變化影響仍不明顯。本研究分析所獲之結論,望可作為未來工業選用潤滑液或接觸元件材料時考量的依據。

    In this study, a rigid-ball squeezed ceramic-based coupled electrolyte solution lubricating film system was simulated. The influences of the electric double layer effect on the transient pressure, thickness of film and elastic deformation of the lubricating fluid film were analyzed. When the boundary potential rised, the apparent viscosity effect also increased, and the smaller the thickness of film was, the more obvious the effect was. The larger the Young's modulus, the greater the apparent viscosity effect, the greater the pressure under the same squeeze time, and the thinner the film thickness due to the smaller degree of elastic deformation. After the change of electric conductivity, the apparent viscosity effect decreased, and the final thickness of film also decreased, but the pressure was still not affected by the change of electric conductivity.

    中文摘要 I Extended Abstract II 誌謝 XI 目錄 XII 表目錄 XV 圖目錄 XVI 符號總表 XX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 電雙層發展沿革 2 1.2.2 純擠壓接觸模型及考慮重疊電雙層之純擠壓彈液動潤滑模型 3 1.2.3 水基潤滑膜與電雙層對水膜潤滑影響 4 1.3 研究動機 6 1.4 論文架構 6 第二章 考慮重疊電雙層之純擠壓彈液動潤滑理論 10 2.1 Hertz接觸力學理論 10 2.2 液動潤滑問題 18 2.2.1 電雙層理論 18 2.2.2 重疊電雙層理論 19 2.2.3 純擠壓Reynolds方程式 40 2.2.4 低壓階段-液動潤滑 48 2.2.5 高壓階段-液膜黏度與壓力之關係 50 2.2.6 高壓階段-液膜密度與壓力之關係 51 2.2.7液膜厚度方程式 51 2.3彈性變形方程式 52 2.4負載平衡方程式 54 第三章 數值分析 66 3.1 有限元素分析法 66 3.1.1 Galerkin方法 67 3.1.2 離散公式 68 3.1.3 Newton-Raphson運算法 70 第四章 結果與討論 75 4.1 模擬方法驗證 75 4.2 網格測試 76 4.3 重疊電雙層之純擠壓彈液動潤滑分析 77 4.3.1 邊界電位對純擠壓各項參數影響 77 4.3.2 材料楊氏模數的影響 78 4.3.3 負載的影響與綜合比較 79 4.4 考慮電導率變化重疊電雙層純擠壓彈液動潤滑分析 81 4.4.1 擠壓下電位分布及離子濃度分布的變化 82 4.4.2 考慮電導率變化時對各項參數影響 84 第五章 結論與未來展望 128 參考文獻 130 附錄(A) 134 Gouy-Chapman模型 134 Boltzmann 分布 134 Poisson-Boltzmann 方程式 136 附錄(B) 143 Debye–Hückel近似 143 附錄(C) 147 數值解電位積分資料庫 147 附錄(D) 150 數值解電場函數資料庫 150

    [1] H. Helmholtz (1879), “Studien über electrische Grenzschichten,” ANNALEN DER PHPSIK UND CHEMIE. NEUE FOLGE BAND VII., 337-382.
    [2] L. G. Gouy (1910), “Sur la constitution de la charge électrique à la surface d’un electrolyte,” J. Phys. Theor., Appl., 9 (1), pp.457-468.
    [3] D. L. Chapman (1913), “A Contribution to the Theory of Electrocapillarity,” Philosophical Magazine Series 6, 25:148, pp.475-481.
    [4] O. Stern (1924), “Zur theorie der elektrolytischen doppelschicht,” Z. Elecktrochem., 30, pp.508-516.
    [5] D. C. Grahame (1947), “THE ELECTRICAL DOUBLE LAYER AND THE THEORY OF ELECTROCAPILLARITY,” Chem Rev., Dec; 41(3): 441-501.
    [6] T. W. Healy and L. R. White (1978), "IONIZABLE SURFACE GROUP MODELS OF AQUEOUS INTERFACES," Advances in Colloid and Interface Science, 9, pp.303–345.
    [7] H. Ban, B. Lin, and Z. Song (2010),“Effect of electrical double layer on electric conductivity and pressure drop in a pressure-driven microchannel flow,” BIOMICROFLUIDICS 4, 014104.
    [8] W. L. Li and Z. Jin (2008), “Effects of electrokinetic slip flow on lubrication theory,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 222: 109.
    [9] W. Qu and D. Li (2000), “A Model for Overlapped EDL Fields,” Journal of Colloid and Interface Science 224, pp.397–407.

    [10] C. L. Ren and D. Li (2005), “Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannels,” Analytica Chimica Acta, 531, pp.15–23.
    [11] K. D. Huang and R. J. Yang (2007), “Electrokinetic behaviour of overlapped electric double layers in nanofluidic channels,” Nanotechnology 18, 115701, 6pp.
    [12] Q. Zuo, P. Huang, and F. Su (2012), “Theory analysis of asymmetrical electric double layer effects on thin film lubrication,” Tribology International 49, pp.67–74.
    [13] H. Christensen (1962), “The Oil Film in a Closing Gap,” The Royal Society 266, pp.312–328.
    [14] H. Christensen (1970), “Elastohydrodynamio Theory of Spherical Bodies in Normal Approach,” Journal of Lubrication Technology, pp.145-153.
    [15] M. M. A. Safa, and R. Gohar (1986), “Pressure Distribution under a Ball Impacting a Thin Lubricant Layer,” Journal of Tribology, vol. 108, pp.372-376.
    [16] R. Larsson and E. Höglund (1994), “Elastohydrodynamic lubrication at pure squeeze motion,” Wear, vol. 179, pp.39-43.
    [17] H. M. Chu, W. L. Li, and M. D. Chen (2006), “Elastohydrodynamic lubrication of circular contacts at pure squeeze motion with non-Newtonian lubricants,” Tribology International 39, 897–905.
    [18] L. M. Chu, W. L. Li, H. C. Hsu, and J. S. Tsai (2012), “Effects of Electric Double Layer on Pure Squeeze Motion of Circular Contacts – An Elastohydrodynamic Lubrication Model,” Advanced Materials Research, Vol. 486, pp.497-502.
    [19] G. T. Y. Wan, P. Kenny, and H. A. Spikes (1984), “Elastohydrodynamic properties of water-based fire-resistant hydraulic fluids,” Tribology International 17, 309-315.
    [20] M. Ratoi and H. A. Spikes (1999), “Lubricating properties of aqueous surfactant solutions,” Tribology Transactions, 42:3, 479-486.
    [21] J. Li, C. Zhang, M. Deng and J. Luo (2015), “Investigation on the difference of liquid superlubricity between water- and oil-based lubricantsproperties of water-based fire-resistant hydraulic fluids,” RSC Advances 5, 63827-63833.
    [22] P. L. Wong, P. Huang, and Y. Meng (2003), “The effect of the electric double layer on a very thin water lubricating film,” Tribology Letters, Vol. 14, No. 3.
    [23] Y. Wang and F. Liu (2010), “An Overview of Water-Lubricated Ceramic Bearings,” MACHINE TOOL & HYDRAULICS, Vol. 38, No. 11.
    [24] H. Hertz (1881), “Über die Berührung fester elastischer Körper,” Journal für die reine und angewandte Mathematik 92, pp.156-171.
    [25] K. L. Johnson (1985), Contact mechanics, Cambridge university press, Cambridge.
    [26] J. H. Masliyah and S. Bhattacharjee (2006), Electrokinetic and Colloid Transport Phenomena, John Wiley & Sons, Inc., Hoboken, New Jersey.

    [27] D. J. Shaw(1980), Introduction to Colloid and Surface Chemistry(3rd ed.), Butterworths, London.
    [28] C. J. A. ROELANDS, J. C. VLUGTER, and H. I. WATERMAN (1963), “The Viscosity-Temperature-Pressure Relationship of Lubricating Oils and Its Correlation with Chemical Constitution,” Journal of Basic Engineering, vol. 85, pp.601-607.
    [29] C. Barus (1893), “Isothermals, isopiestics and isometrics relative to viscosity,” American journal of science, pp.87-96.
    [30] D. Dowson, G. R. Higginson, J. Archard, and A. Crook(1966), Elasto-hydrodynamic lubrication: the fundamentals of roller and gear lubrication vol. 23: Pergamon Press Oxford.
    [31] F. A. Goncalves and J. Kestin (1977), “The Viscosity of NaCl and KCl Solutions in the Range 25-50 °C,“ Berichte der Bunsen-Gesellschaft, vol. 81, pp.1156-1161.
    [32] B. O. Jacobson (1991), RHEOLOGY AND ELASTOHYDRODYNAMIC LUBRICATION, Tribology series: 19.
    [33] R. B. McCleskey (2011), “Electrical Conductivity of Electrolytes Found in Natural Waters from (5 to 90) °C,“ J. Chem. Eng. Data, 56, pp.317–327.
    [34] V. M. M. Lobo, A. C. F. Ribeiro, and L. M. P. Verissimo (1998), “Diffusion Coefficients in Aqueous Solutions of Potassium Chloride at High and Low Concentrations,” Journal of Molecular Liquids 78, 139-149.
    [35] P. Schatzberg (1967), “On the Molecular Diameter of Water from Solubility and Diffusion Measurements,“ The Journal of Physical Chemistry, vol. 71, pp.4569–4570.

    無法下載圖示 校內:2020-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE