| 研究生: |
林兆元 Lin, Zhao-Yuan |
|---|---|
| 論文名稱: |
氧化劑對微囊藻和柱孢藻的壓力與基因表現之影響 Effects of oxidants on reactive oxygen species production and gene expression for Microcystis aeruginosa and Cylindrospermopsis raciborskii |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 微囊藻 、柱孢藻 、微囊藻毒素 、柱孢藻毒素 、高錳酸鉀 、一氯胺 、次氯酸鈉 、臭氧 、基因表現量 、活性氧物質 |
| 外文關鍵詞: | Microcystis, Microcystin, Cylindrospermopsis, Cylindrospermopsin, gene expression, cell integrity, ROS, SOD, GSH, CAT |
| 相關次數: | 點閱:203 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有害藻華 (Harmful Algae Blooms, HABs) 已經被認為是一個全球性問題,藻華形成生物的有毒代謝物,與飲用水和娛樂用水安全有關,而氧化是控制湖泊、水庫和水處理廠中藍綠菌和其毒素的常用手法。然而,在HABs事件中可能會出現低劑量氧化劑的情況,因為大量的細胞及其細胞外物質使投入的氧化劑不會迅速破壞細胞,反而導致剩餘藍綠菌的氧化壓力,導致細胞可能增啟動各種因應方式,例如產生活性氧(Reactive Oxygen Species, ROS)及抗氧化物質等。因此,我們可以通過觀察系統中抗氧化酵素的變化來判斷細胞是否受到威脅。
抗氧化酵素在醫學及動物試驗方面已經趨於成熟,在藻類應用上仍需要更多關注,因此本研究中首先建立並最佳化藍綠菌中抗氧化酵素分析技術,藻類中抗氧化酵素參考血液樣品之處理步驟,探討不同細胞破碎程序對分析結果的影響。最佳化完成後同時觀察樣品之保存溫度及保存時間,在負80度的保存下為最佳,超氧化物岐化酶(Superoxide, SOD)、過氧化氫酶(Catalase, CAT)與穀胱甘肽(Glutathione, GSH)的保存時間分別為1小時、3小時及24小時。
本研究並探討四種水廠常用氧化劑,包括次氯酸鈉、高錳酸鉀、臭氧及一氯胺對銅綠微囊藻和拉氏柱孢藻的影響,進行藻類氧化實驗,並分析藻細胞反應,包括細胞完整性、總毒素分析和活性氧分析和基因表達量。微囊藻對次氯酸鈉、高錳酸鉀與一氯胺的耐受性較柱孢藻佳,且微囊藻在次氯酸鈉不同情況下的作用,會造成胞內毒素的刺激生成或釋出,僅有在臭氧的作用下基因表現量明顯上升。柱孢藻在臭氧作用下損傷比微囊藻低,且其餘氧化劑作用下皆使胞內毒素釋出,而沒有進一步的降解,對於基因表現量大多呈現下降的趨勢。本研究所有氧化實驗中,抗氧化酵素皆呈現不同的變化。研究結果可以提供水廠使用氧化劑處理藻類原水之參考。
Harmful Algae Blooms (HABs) have been recognized as a global problem, and the toxic metabolites formed in the blooms are related to drinking and recreational water safety. Oxidation is one of the methods used in the control of cyanobacteria in lakes, reservoirs and water treatment plants. Therefore, the interactions among cells and oxidants are expected and investigated. In this study, cellular responses to oxidative stress are studied by examining toxin production and gene expression in two cyanobacteria, Cylindrospermopsis raciborskii and Microcystis aeruginosa.
The effects of four commonly used oxidants in water treatment plants, including sodium hypochlorite, potassium permanganate, ozone and monochloramine, on cellular responses of two cyanobacteria, Cylindrospermopsis raciborskii and Microcystis aeruginosa were investigated. Oxidation experiments were conducted and the cell responses were characterized by the analysis of cell integrity, toxin concentrations, reactive oxygen species and gene expression. The tolerance of Microcystis to sodium hypochlorite, potassium permanganate and monochloramine is better than that of Cylindrospermopsis. Besides, the exposure of Microcystis under to sodium hypochlorite results in the stimulation of toxin formation or release, and however, significant gene expression was only found when exposing to ozone. The damage of Cylindrospermopsis under of ozonation was lower than that of Microcystis, and the rest of the oxidants all led to the release of intracellular toxins without further degradation. In addition, for most oxidants, the gene expression levels of C. raciborskii showed a downward trend. In all oxidation experiments in this study, the antioxidant enzymes for different combinations of oxidant and cyanobacteria showed different changes. The results can provide a reference for water treatment plants when using oxidants to treat cyanobacteria-laden raw water.
Al Momani, F., Smith, D. W., & El-Din, M. G. (2008). Degradation of cyanobacteria toxin by advanced oxidation processes. Journal of hazardous materials, 150(2), 238-249.
Allen, J., & Hall, D. (1973). Superoxide reduction as a mechanism of ascorbate-stimulated oxygen uptake by isolated chloroplasts. Biochemical and biophysical research communications, 52(3), 856-862.
Arheimer, B., Andréasson, J., Fogelberg, S., Johnsson, H., Pers, C. B., & Persson, K. (2005). Climate change impact on water quality: model results from southern Sweden. AMBIO: A Journal of the Human Environment, 34(7), 559-566.
Asada, K. (1999). The water–water cycle in chloroplasts: scavenging of.
Asada, K. (2019). Production and action of active oxygen species in photosynthetic tissues. In Causes of photooxidative stress and amelioration of defense systems in plants (pp. 77-104): CRC press.
Banker, R., Carmeli, S., Werman, M., Teltsch, B., Porat, R., & Sukenik, A. (2001). Uracil moiety is required for toxicity of the cyanobacterial hepatotoxin cylindrospermopsin. Journal of Toxicology and Environmental Health Part A, 62(4), 281-288.
Barón-Sola, Á., del Campo, F. F., & Sanz-Alférez, S. (2016). Dynamics of cylindrospermopsin production and toxin gene expression in Aphanizomenon ovalisporum. Advances in Microbiology, 6(5), 381-390.
Bellon-Fontaine, M.-N., & Cerf, O. (1988). Nettoyage et désinfection dans les industries alimentaires: Apria.
Blanco, Y., Moreno-Paz, M., & Parro, V. (2017). Experimental protocol for detecting cyanobacteria in liquid and solid samples with an antibody microarray chip. JoVE (Journal of Visualized Experiments)(120), e54994.
Bond, T., Huang, J., Templeton, M. R., & Graham, N. (2011). Occurrence and control of nitrogenous disinfection by-products in drinking water–a review. Water Research, 45(15), 4341-4354.
Bormans, M., Lengronne, M., Brient, L., & Duval, C. (2014). Cylindrospermopsin accumulation and release by the benthic cyanobacterium Oscillatoria sp. PCC 6506 under different light conditions and growth phases. Bulletin of environmental contamination and toxicology, 92(2), 243-247.
Bouaïcha, N., Miles, C. O., Beach, D. G., Labidi, Z., Djabri, A., Benayache, N. Y., & Nguyen-Quang, T. (2019). Structural diversity, characterization and toxicology of microcystins. Toxins, 11(12), 714.
Bourke, A., Hawes, R., Neilson, A., & Stallman, N. (1983). An outbreak of hepato-enteritis (the Palm Island mystery disease) possibly caused by algal intoxication. Toxicon, 21, 45-48.
Brient, L., Ben Gamra, N., Periot, M., Roumagnac, M., Zeller, P., Bormans, M., . . . Biegala, I. C. (2017). Rapid characterization of microcystin-producing cyanobacteria in freshwater lakes by TSA-FISH (Tyramid signal amplification-fluorescent in situ hybridization). Frontiers in environmental science, 5, 43.
Burford, M. A., & Davis, T. W. (2011). Physical and chemical processes promoting dominance of the toxic cyanobacterium Cylindrospermopsis raciborskii. Chinese Journal of Oceanology and Limnology, 29(4), 883-891.
Burton, G. W., & Ingold, K. (1984). β-Carotene: an unusual type of lipid antioxidant. Science, 224(4649), 569-573.
Cane, D. E., & Walsh, C. T. (1999). The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chemistry & biology, 6(12), R319-R325.
Canini, A., Caiola, M. G., Civitareale, P., & Galiazzo, F. (1992). Superoxide dismutase in symbiotic, free-living and wild Anabaena and Nostoc (Nostocales, Cyanophyta). Phycologia, 31(3-4), 225-230.
Cha, Y., & Stow, C. A. (2015). Mining web-based data to assess public response to environmental events. Environmental Pollution, 198, 97-99.
Chadd, H. E., Newman, J., Mann, N. H., & Carr, N. G. (1996). Identification of iron superoxide dismutase and a copper/zinc superoxide dismutase enzyme activity within the marine cyanobacterium Synechococcus sp. WH 7803. FEMS microbiology letters, 138(2-3), 161-165.
CHANGE, I. P. O. C. (2007). REPORT OF THE NINETEENTH SESSION OF THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC) Geneva, 17-20 (am only) April 2002.
Chen, C., Ibekwe‐SanJuan, F., & Hou, J. (2010). The structure and dynamics of cocitation clusters: A multiple‐perspective cocitation analysis. Journal of the American Society for information Science and Technology, 61(7), 1386-1409.
Chen, Y., Yu, S., Yang, J., Lin, Y., Hu, L., Xu, M., . . . Wei, G. (2002). Microcystins in drinking water and cancer mortality in a city along Taihu Lake. China, Oncology, 12, 485-488.
Chiswell, R. K., Shaw, G. R., Eaglesham, G., Smith, M. J., Norris, R. L., Seawright, A. A., & Moore, M. R. (1999). Stability of cylindrospermopsin, the toxin from the cyanobacterium, Cylindrospermopsis raciborskii: Effect of pH, temperature, and sunlight on decomposition. Environmental Toxicology: An International Journal, 14(1), 155-161.
Chorus, I., & Welker, M. (2021). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management: Taylor & Francis.
Chow, C. W., Drikas, M., House, J., Burch, M. D., & Velzeboer, R. M. (1999). The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Research, 33(15), 3253-3262.
Dai, R., Zhou, Y., Chen, Y., Zhang, X., Yan, Y., & An, D. (2019). Effects of arginine on the growth and microcystin-LR production of Microcystis aeruginosa in culture. Science of the total environment, 651, 706-712.
Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in environmental science, 2, 53.
Ding, J., Shi, H., Timmons, T., & Adams, C. (2010). Release and removal of microcystins from microcystis during oxidative-, physical-, and UV-based disinfection. Journal of Environmental Engineering, 136(1), 2-11.
Dixon, M. B., Richard, Y., Ho, L., Chow, C. W., O’Neill, B. K., & Newcombe, G. (2011). A coagulation–powdered activated carbon–ultrafiltration–Multiple barrier approach for removing toxins from two Australian cyanobacterial blooms. Journal of hazardous materials, 186(2-3), 1553-1559.
Downing, J. A., Watson, S. B., & McCauley, E. (2001). Predicting cyanobacteria dominance in lakes. Canadian journal of fisheries and aquatic sciences, 58(10), 1905-1908.
Drążkiewicz, M., Skórzyńska-Polit, E., & Krupa, Z. (2003). Response of the ascorbate–glutathione cycle to excess copper in Arabidopsis thaliana (L.). Plant Science, 164(2), 195-202.
Elliott, J. A. (2010). The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Global change biology, 16(2), 864-876.
Falconer, I., Bartram, J., Chorus, I., Kuiper-Goodman, T., Utkilen, H., Burch, M., & Codd, G. (1999). Safe levels and safe practices. Toxic cyanobacteria in water, 155-178.
Falconer, I. R. (1993). Measurement of toxins from blue-green algae in water and foodstuffs. Algal toxins in seafood and drinking water, 1, 165-175.
Fischer, B. B., Hideg, E., & Krieger-Liszkay, A. (2013). Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxidants & redox signaling, 18(16), 2145-2162.
Francis, G. (1878). Poisonous australian lake. Nature, 18(444), 11-12.
Fridovich, I. (1997). Superoxide anion radical (O· 2), superoxide dismutases, and related matters. Journal of Biological Chemistry, 272(30), 18515-18517.
Froscio, S. M., Humpage, A. R., Burcham, P. C., & Falconer, I. R. (2003). Cylindrospermopsin‐induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environmental Toxicology: An International Journal, 18(4), 243-251.
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930.
Glibert, P. M., Berdalet, E., Burford, M. A., Pitcher, G. C., & Zhou, M. (2018). Global ecology and oceanography of harmful algal blooms (Vol. 232): Springer.
Griffiths, D. J., & Saker, M. L. (2003). The Palm Island mystery disease 20 years on: a review of research on the cyanotoxin cylindrospermopsin. Environmental Toxicology: An International Journal, 18(2), 78-93.
Halliwell, B., & Gutteridge, J. M. (1986). Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Archives of biochemistry and biophysics, 246(2), 501-514.
Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine: Oxford university press, USA.
Hamza, I. A., & Bibby, K. (2019). Critical issues in application of molecular methods to environmental virology. Journal of virological methods, 266, 11-24.
Harman, D. (2002). Aging: a theory based on free radical and radiation chemistry. Science of Aging Knowledge Environment, 2002(37), cp14-cp14.
Hart, J., Fawell, J., & Croll, B. (1998). The fate of both intra- and extracellular toxins during drinking water treatment. Water Supply, 16(1), 611-616.
Hawkins, P. R., Runnegar, M. T., Jackson, A., & Falconer, I. (1985). Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Applied and environmental microbiology, 50(5), 1292-1295.
Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., . . . Humphries, E. (2008). Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae, 8(1), 3-13.
Hernández, J., Barba-Espín, G., & Diaz-Vivancos, P. (2017). Glutathione-mediated biotic stress tolerance in plants. In Glutathione in plant growth, development, and stress tolerance (pp. 309-329): Springer.
Ho, L., Dreyfus, J., Boyer, J., Lowe, T., Bustamante, H., Duker, P., . . . Newcombe, G. (2012). Fate of cyanobacteria and their metabolites during water treatment sludge management processes. Science of the total environment, 424, 232-238.
Hou, C.-r., Hu, W., Jia, R.-B., & Liu, P.-Q. (2008). The mechanism of cyanobacterium (M. aeruginosa) microcystins releasing by chemical oxidation in drinking water treatment. Paper presented at the 2008 2nd International Conference on Bioinformatics and Biomedical Engineering.
Houliez, E., Briand, E., Malo, F., Rovillon, G.-A., Hervé, F., Robert, E., . . . Caruana, A. M. (2021). Physiological changes induced by sodium chloride stress in Aphanizomenon gracile, Cylindrospermopsis raciborskii and Dolichospermum sp. Harmful Algae, 103, 102028.
Hu, X., Bidney, D. L., Yalpani, N., Duvick, J. P., Crasta, O., Folkerts, O., & Lu, G. (2003). Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiology, 133(1), 170-181.
Huang, J., Zhang, Y., Huang, Q., & Gao, J. (2018). When and where to reduce nutrient for controlling harmful algal blooms in large eutrophic lake Chaohu, China? Ecological Indicators, 89, 808-817.
Humpage, A., & Falconer, I. (2003). Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: determination of no observed adverse effect level for deriving a drinking water guideline value. Environmental Toxicology: An International Journal, 18(2), 94-103.
Jahan, S., Yusoff, I. B., Alias, Y. B., & Bakar, A. F. B. A. (2017). Reviews of the toxicity behavior of five potential engineered nanomaterials (ENMs) into the aquatic ecosystem. Toxicology reports, 4, 211-220.
Jiang, Y., Song, G., Pan, Q., Yang, Y., & Li, R. (2015). Identification of genes for anatoxin-a biosynthesis in Cuspidothrix issatschenkoi. Harmful Algae, 46, 43-48.
Jochimsen, E. M., Carmichael, W. W., An, J., Cardo, D. M., Cookson, S. T., Holmes, C. E., . . . Barreto, V. S. T. (1998). Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. New England Journal of Medicine, 338(13), 873-878.
Joo, S., Park, P., & Park, S. (2019). Applicability of propidium monoazide (PMA) for discrimination between living and dead phytoplankton cells. PloS one, 14(6), e0218924.
Kaebernick, M., Dittmann, E., Börner, T., & Neilan, B. A. (2002). Multiple alternate transcripts direct the biosynthesis of microcystin, a cyanobacterial. Applied and environmental microbiology, 68(2), 449-455.
Kaebernick, M., & Neilan, B. A. (2001). Ecological and molecular investigations of cyanotoxin production. FEMS microbiology ecology, 35(1), 1-9.
Karuppanapandian, T., Moon, J.-C., Kim, C., Manoharan, K., & Kim, W. (2011). Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science, 5(6), 709-725.
Ke, W.-T., Dai, G.-Z., Jiang, H.-B., Zhang, R., & Qiu, B.-S. (2014). Essential roles of iron superoxide dismutase in photoautotrophic growth of Synechocystis sp. PCC 6803 and heterogeneous expression of marine Synechococcus sp. CC9311 copper/zinc superoxide dismutase within its sodB knockdown mutant. Microbiology, 160(1), 228-241.
Keijola, A.-M., Himberg, K., Esala, A.-L., Sivonen, K., & Hiis‐Virta, L. (1988). Removal of cyanobacterial toxins in water treatment processes: Laboratory and pilot‐scale experiments. Toxicity assessment, 3(5), 643-656.
Kemppainen, B. W., Reifenrath, W. G., Stafford, R. G., & Mehta, M. (1991). Methods for in vitro skin absorption studies of a lipophilic toxin produced by red tide. Toxicology, 66(1), 1-17.
Krinsky, N. (1978). Non-photosynthetic functions of carotenoids. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 284(1002), 581-590.
Laszakovits, J. R., & MacKay, A. A. (2019). Removal of cyanotoxins by potassium permanganate: Incorporating competition from natural water constituents. Water Research, 155, 86-95.
Lehtimaki, J., Moisander, P., Sivonen, K., & Kononen, K. (1997). Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Applied and environmental microbiology, 63(5), 1647-1656.
Lei, L., Lei, M., Lu, Y., Peng, L., & Han, B.-P. (2019). Development of real-time PCR for quantification of Cylindrospermopsis raciborskii cells and potential cylindrospermopsin-producing genotypes in subtropicalreservoirs of southern China. Journal of Applied Phycology, 31(6), 3749-3758.
Li, H., Pei, H., Xu, H., Jin, Y., & Sun, J. (2018). Behavior of Cylindrospermopsis raciborskii during coagulation and sludge storage–higher potential risk of toxin release than Microcystis aeruginosa? Journal of hazardous materials, 347, 307-316.
Li, X., Pei, H., Hu, W., Meng, P., Sun, F., Ma, G., . . . Li, Y. (2015). The fate of Microcystis aeruginosa cells during the ferric chloride coagulation and flocs storage processes. Environmental technology, 36(7), 920-928.
Li, X., Zeng, J., & Yu, X. (2021). Potassium permanganate as a promising pre-oxidant to treat low-viability cyanobacteria and associated removal of cyanotoxins and extracellular organic matters. Water Research, 202, 117353.
Lin, J.-L., Hua, L.-C., Hung, S. K., & Huang, C. (2018). Algal removal from cyanobacteria-rich waters by preoxidation-assisted coagulation–flotation: effect of algogenic organic matter release on algal removal and trihalomethane formation. Journal of Environmental Sciences, 63, 147-155.
Liu, X., Chen, Z., Zhou, N., Shen, J., & Ye, M. (2010). Degradation and detoxification of microcystin-LR in drinking water by sequential use of UV and ozone. Journal of Environmental Sciences, 22(12), 1897-1902.
Lu, K.-Y., Chiu, Y.-T., Burch, M., Senoro, D., & Lin, T.-F. (2019). A molecular-based method to estimate the risk associated with cyanotoxins and odor compounds in drinking water sources. Water Research, 164, 114938.
Lu, S., Wang, N., & Wang, C. (2018). Oxidation and biotoxicity assessment of microcystin-LR using different AOPs based on UV, O3 and H2O2. Frontiers of Environmental Science & Engineering, 12(3), 1-7.
Lukač, M., & Aegerter, R. (1993). Influence of trace metals on growth and toxin production of Microcystis aeruginosa. Toxicon, 31(3), 293-305.
Lukatkin, A. (2002). Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants: 2. The activity of antioxidant enzymes during plant chilling. Russian Journal of Plant Physiology, 49(6), 782-788.
Ma, B., Qi, J., Wang, X., Ma, M., Miao, S., Li, W., . . . Qu, J. (2018). Moderate KMnO4-Fe (II) pre-oxidation for alleviating ultrafiltration membrane fouling by algae during drinking water treatment. Water Research, 142, 96-104.
Ma, M., Liu, R., Liu, H., & Qu, J. (2012). Chlorination of Microcystis aeruginosa suspension: cell lysis, toxin release and degradation. Journal of hazardous materials, 217, 279-285.
Masip, L., Veeravalli, K., & Georgiou, G. (2006). The many faces of glutathione in bacteria. Antioxidants & redox signaling, 8(5-6), 753-762.
Mathis, P., & Kleo, J. (1973). The triplet state of β‐carotene and of analog polyenes of different length. Photochemistry and Photobiology, 18(4), 343-346.
McKersie, B. D., Bowley, S. R., Harjanto, E., & Leprince, O. (1996). Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiology, 111(4), 1177-1181.
Mehler, A. H. (1951). Studies on reactions of illuminated chloroplasts: I. Mechanism of the reduction of oxygen and other hill reagents. Archives of biochemistry and biophysics, 33(1), 65-77.
Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., & Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment international, 59, 303-327.
Meyer, A. J., Brach, T., Marty, L., Kreye, S., Rouhier, N., Jacquot, J. P., & Hell, R. (2007). Redox‐sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. The Plant Journal, 52(5), 973-986.
Michinaka, A., Yen, H., Chiu, Y., Tsao, H., & Lin, T. (2012). Rapid on-site multiplex assays for total and toxigenic Microcystis using real-time PCR with microwave cell disruption. Water Science and Technology, 66(6), 1247-1252.
Mihali, T. K., Kellmann, R., Muenchhoff, J., Barrow, K. D., & Neilan, B. A. (2008). Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Applied and environmental microbiology, 74(3), 716-722.
Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in plant science, 9(10), 490-498.
Monk, L. S., Fagerstedt, K. V., & Crawford, R. M. (1989). Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiologia Plantarum, 76(3), 456-459.
Moradi, S., Liu, S., Chow, C. W., van Leeuwen, J., Cook, D., Drikas, M., & Amal, R. (2017). Chloramine demand estimation using surrogate chemical and microbiological parameters. Journal of Environmental Sciences, 57, 1-7.
Moreira, C., Ramos, V., Azevedo, J., & Vasconcelos, V. (2014). Methods to detect cyanobacteria and their toxins in the environment. Applied microbiology and biotechnology, 98(19), 8073-8082.
Mur, R., Skulberg, O. M., & Utkilen, H. (1999). CYANOBACTERIA IN THE ENVIRONMENT.
Narainsamy, K., Marteyn, B., Sakr, S., Cassier-Chauvat, C., & Chauvat, F. (2013). Genomics of the pleïotropic glutathione system in cyanobacteria. In Advances in Botanical Research (Vol. 65, pp. 157-188): Elsevier.
Navari-Izzo, F., Quartacci, M. F., & Sgherri, C. (1996). Superoxide generation in relation to dehydration and rehydration. Biochemical Society Transactions, 24(2), 447-451.
Nicholson, B. C., Rositano, J., & Burch, M. D. (1994). Destruction of cyanobacterial peptide hepatotoxins by chlorine and chloramine. Water Research, 28(6), 1297-1303.
Nocker, A., Cheung, C.-Y., & Camper, A. K. (2006). Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. Journal of microbiological methods, 67(2), 310-320.
Nocker, A., Mazza, A., Masson, L., Camper, A. K., & Brousseau, R. (2009). Selective detection of live bacteria combining propidium monoazide sample treatment with microarray technology. Journal of microbiological methods, 76(3), 253-261.
Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual review of plant biology, 49(1), 249-279.
Onstad, G. D., Strauch, S., Meriluoto, J., Codd, G. A., & Von Gunten, U. (2007). Selective oxidation of key functional groups in cyanotoxins during drinking water ozonation. Environmental science & technology, 41(12), 4397-4404.
Oren, A., Pri-El, N., Shapiro, O., & Siboni, N. (2006). Buoyancy studies in natural communities of square gas-vacuolate archaea in saltern crystallizer ponds. Saline Systems, 2(1), 1-8.
Pacheco, A. B. F., Guedes, I. A., & Azevedo, S. M. (2016). Is qPCR a reliable indicator of cyanotoxin risk in freshwater? Toxins, 8(6), 172.
Paumann, M., Regelsberger, G., Obinger, C., & Peschek, G. A. (2005). The bioenergetic role of dioxygen and the terminal oxidase (s) in cyanobacteria. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1707(2-3), 231-253.
Peng, G., Lin, S., Fan, Z., & Wang, X. (2017). Transcriptional and physiological responses to nutrient loading on toxin formation and photosynthesis in Microcystis aeruginosa FACHB-905. Toxins, 9(5), 168.
Powles, S. B. (1984). Photoinhibition of photosynthesis induced by visible light. Annual review of plant physiology, 35(1), 15-44.
Qi, J., Lan, H., Liu, R., Miao, S., Liu, H., & Qu, J. (2016). Prechlorination of algae-laden water: the effects of transportation time on cell integrity, algal organic matter release, and chlorinated disinfection byproduct formation. Water Research, 102, 221-228.
Qi, J., Lan, H., Miao, S., Xu, Q., Liu, R., Liu, H., & Qu, J. (2016). KMnO4–Fe (II) pretreatment to enhance Microcystis aeruginosa removal by aluminum coagulation: Does it work after long distance transportation? Water Research, 88, 127-134.
Qi, J., Ma, B., Miao, S., Liu, R., Hu, C., & Qu, J. (2021). Pre-oxidation enhanced cyanobacteria removal in drinking water treatment: A review. Journal of Environmental Sciences, 110, 160-168.
Rapala, J., Sivonen, K., Lyra, C., & Niemelä, S. I. (1997). Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Applied and environmental microbiology, 63(6), 2206-2212.
Regelsberger, G. n., Laaha, U., Dietmann, D., Rüker, F., Canini, A., Grilli-Caiola, M., . . . Obinger, C. (2004). The iron superoxide dismutase from the filamentous cyanobacterium Nostoc PCC 7120: Localization, overexpression, and biochemical characterization. Journal of Biological Chemistry, 279(43), 44384-44393.
Reynolds, C. S., Oliver, R. L., & Walsby, A. E. (1987). Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. New Zealand journal of marine and freshwater research, 21(3), 379-390.
Robarts, R. D., & Zohary, T. (1987). Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. New Zealand journal of marine and freshwater research, 21(3), 391-399.
Rodríguez, E., Onstad, G. D., Kull, T. P., Metcalf, J. S., Acero, J. L., & von Gunten, U. (2007). Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Research, 41(15), 3381-3393.
Rogers, E., Zehr, R., Gage, M., Humpage, A., Falconer, I., Marr, M., & Chernoff, N. (2007). The cyanobacterial toxin, cylindrospermopsin, induces fetal toxicity in the mouse after exposure late in gestation. Toxicon, 49(6), 855-864.
Romero, D. M., de Molina, M. C. R., & Juárez, Á. B. (2011). Oxidative stress induced by a commercial glyphosate formulation in a tolerant strain of Chlorella kessleri. Ecotoxicology and Environmental Safety, 74(4), 741-747.
Scandalios, J. G. (1990). Response of plant antioxidant defense genes to environmental stress. Advances in genetics, 28, 1-41.
Schafer, F. Q., & Buettner, G. R. (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free radical biology and medicine, 30(11), 1191-1212.
Seidel, A., Miller, M., & Jorgensen, P. (2018). Fine-tune Chloramine Disinfectant Residual Levels in Distribution Networks. Opflow Online, 44(12).
Serrano, A., Rivas, J., & Losada, M. (1984). Purification and properties of glutathione reductase from the cyanobacterium Anabaena sp. strain 7119. Journal of bacteriology, 158(1), 317-324.
Sevilla, E., Martin-Luna, B., Vela, L., Teresa Bes, M., Luisa Peleato, M., & Fillat, M. F. (2010). Microcystin-LR synthesis as response to nitrogen: transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806. Ecotoxicology, 19(7), 1167-1173.
Sinha, R., Pearson, L. A., Davis, T. W., Burford, M. A., Orr, P. T., & Neilan, B. A. (2012). Increased incidence of Cylindrospermopsis raciborskii in temperate zones–is climate change responsible? Water Research, 46(5), 1408-1419.
Stahl, W., Ale-Agha, N., & Polidori, M. C. (2002). Non-antioxidant properties of carotenoids.
Stanier, R. Y., & Van Niel, C. (1962). The concept of a bacterium. Archiv für Mikrobiologie, 42(1), 17-35.
Takaara, T., Sano, D., Masago, Y., & Omura, T. (2010). Surface-retained organic matter of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride in drinking water treatment. Water Research, 44(13), 3781-3786.
Takaichi, S., & Mochimaru, M. (2007). Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosides. Cellular and molecular life sciences, 64(19), 2607-2619.
Tavernier, S., & Coenye, T. (2015). Quantification of Pseudomonas aeruginosa in multispecies biofilms using PMA-qPCR. PeerJ, 3, e787.
Tillett, D., Dittmann, E., Erhard, M., Von Döhren, H., Börner, T., & Neilan, B. A. (2000). Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide–polyketide synthetase system. Chemistry & biology, 7(10), 753-764.
Tonk, L., Visser, P. M., Christiansen, G., Dittmann, E., Snelder, E. O., Wiedner, C., . . . Huisman, J. (2005). The microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity. Applied and environmental microbiology, 71(9), 5177-5181.
Ueno, Y., Nagata, S., Tsutsumi, T., Hasegawa, A., Watanabe, M. F., Park, H.-D., . . . Yu, S.-Z. (1996). Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay.
Utkilen, H., & Gjølme, N. (1995). Iron-stimulated toxin production in Microcystis aeruginosa. Applied and environmental microbiology, 61(2), 797-800.
Vardar, C., İlhan, K., & Karabulut, Ö. A. (2012). The application of various disinfectants by fogging for decreasing postharvest diseases of strawberry.
Wang, M., Wang, D., Lin, L., & Hong, H. (2010). Protein profiles in zebrafish (Danio rerio) brains exposed to chronic microcystin-LR. Chemosphere, 81(6), 716-724.
Wang, X., Huang, K., Gao, J., Szeto, Y. T., Jiang, C., Zhu, J., . . . Liu, J. (2021). Effects on photosynthetic and antioxidant systems of harmful cyanobacteria by nanocrystalline Zn-MOF-FA. Science of the total environment, 792, 148247.
Westrick, J. A., Szlag, D. C., Southwell, B. J., & Sinclair, J. (2010). A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Analytical and bioanalytical chemistry, 397(5), 1705-1714.
Wolf, A. M., Asoh, S., Ohsawa, I., & Ohta, S. (2008). Imaging mitochondrial redox environment and oxidative stress using a redox-sensitive fluorescent protein. Journal of Nippon Medical School, 75(2), 66-67.
Wormer, L., Cirés, S., Carrasco, D., & Quesada, A. (2008). Cylindrospermopsin is not degraded by co-occurring natural bacterial communities during a 40-day study. Harmful Algae, 7(2), 206-213.
Wu, T., Zhu, G., Zhu, M., Xu, H., Yang, J., & Zhao, X. (2021). Effects of algae proliferation and density current on the vertical distribution of odor compounds in drinking water reservoirs in summer. Environmental Pollution, 288, 117683.
Xue, Z., Lee, W. H., Coburn, K. M., & Seo, Y. (2014). Selective reactivity of monochloramine with extracellular matrix components affects the disinfection of biofilm and detached clusters. Environmental science & technology, 48(7), 3832-3839.
Yang, Y., Yu, G., Chen, Y., Jia, N., & Li, R. (2021). Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin. Journal of hazardous materials, 406, 124653.
Yu, S. (1989). Drinking water and primary liver cancer. Primary liver cancer., 20-30.
Zamocky, M., Furtmüller, P. G., & Obinger, C. (2008). Evolution of catalases from bacteria to humans. Antioxidants & redox signaling, 10(9), 1527-1548.
Zhang, H., & Forman, H. J. (2012). Glutathione synthesis and its role in redox signaling. Paper presented at the Seminars in cell & developmental biology.
校內:2027-07-01公開