研究生: |
胡雅雯 Hu, Ya-Wen |
---|---|
論文名稱: |
奈米流體於具肋條中斷式微渠道散熱器之數值模擬與最佳化 Numerical simulation and optimization of nanofluids in an interrupted microchannel heat sink with ribs |
指導教授: |
楊玉姿
Yang, Yue-Tzu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 141 |
中文關鍵詞: | 中斷式微渠道散熱器 、肋條 、奈米流體 、單相模型 、混合模型 、基因演算法 、最佳化 |
外文關鍵詞: | Interrupted microchannel heat sink, Ribs, Nanofluids, Single-phase model, Mixture model, Optimization, Genetic algorithm |
相關次數: | 點閱:114 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以單相與混合模型探討Al2O3/water奈米流體於均勻等熱通量中斷式微渠道散熱器,不同肋條之層流流場與熱傳特性的數值模擬。所考慮的五種不同肋條形狀是矩形(R)、橢圓形(E)、菱形(D)、前向三角形(FT)以及梯形(TR)。在流體與固體區域皆以控制體積法求解納維-斯托克斯方程式(Navier-Stokes equations)與共軛能量方程式,以QUICK法及SIMPLE法來離散動量方程式與能量方程式。本文研究參數包括雷諾數(181 ≤ Re ≤ 701)、奈米粒子體積濃度(2 % ≤ ϕ ≤ 4 %)和奈米粒子粒徑(13 nm ≤ dp ≤59 nm),並詳細討論參數對速度分布、溫度分布、平均紐賽數和平均摩擦因子的影響。
首先以純水與參考文獻中可用的數據作驗證,再進一步擴展到Al2O3/water奈米流體。數值模擬結果顯示,平均紐賽數會隨著奈米粒子體積濃度與雷諾數的增加而提高,且混合模型之平均紐賽數均高於單相模型,整體平均紐賽數增加約35.5%,但奈米粒子粒徑的影響並不明顯。此計算結果顯示奈米流體在單相模型與混合模型中,在流場表現近乎相同,而熱傳特性上卻有明顯的差異。整體而言,改變肋條形狀能有效提升熱傳效果,但同時卻也大幅增加平均摩擦因子。
其次,選出熱性能係數最好的肋條形狀(IMCHS-TR)進行尺寸形狀之數值模擬,並討論無因次化參數與奈米粒子體積濃度對該流場和熱傳之特性。研究的無因次化參數包括梯形肋條上下底之比值(0.4 ≤ α ≤ 0.6)、高度和上下底差之比值(1.075 ≤ β ≤ 3.125)和奈米粒子體積濃度(ϕ)。數值模擬結果顯示,平均紐賽數最高在α=0.6、β=3.125和ϕ = 4 %,平均摩擦因子最低在α=0.4、β=1.075和ϕ = 4 %。
在比較單相與混合模型的數值結果後,並提出以多重參數結合實驗設計(DOE)及反應曲面法(RSM)進行最佳化,藉由基因演算法(GA)與計算流體力學(CFD)設計中斷式微渠道散熱器之奈米流體層流強制對流問題。定義熱性能係數為目標函數並發展出具有三個設計參數之迴歸函數α、β和ϕ。由數值最佳化結果顯示,單相模型與混合模型之最佳組較原尺寸,熱性能係數η增益可達到約15.4 % 與41.3 %。
Numerical simulations by single-phase model and mixture model of Al2O3/water nanofluids for the laminar flow and heat transfer characteristics in the interrupted microchannel heat sink with different ribs are investigated. Five different rib geometries are considered: rectangular (R), ellipsoidal (E), diamond (D), forward triangular (FT) and trapezoid (TR). The effects of the parameters, including Reynolds numbers, the nanoparticle volume concentrations (ϕ) and the nanoparticle diameters (dp), on the velocity contour, temperature distribution, average Nusselt number and the average friction factor are discussed in detail. Further, the different geometric shape of the ribs with the best thermal coefficient is selected (i.e. IMCHS-TR), and the flow field and heat transfer characteristics are discussed for the dimensionless parameters, i.e., the ratio of upper width and lower width of the microchannel (α), the ratio of the height of the microchannel to the difference between the upper and lower width of the microchannel (β) and the nanoparticle volume concentrations (ϕ). The multi-parameter constrained optimization procedure integrating the design of experiments (DOE), response surface methodology (RSM), genetic algorithm (GA) and computational fluid dynamics (CFD) are proposed to design the laminar forced convection of nanofluids for the interrupted microchannel heat sink. The objective function η is defined as the thermal performance factor has developed a regression function with three design parameters, α, β and ϕ. The numerical optimization indicates that the enhancement of thermal performance factor η with single-phase model and mixture model can achieve 15.4 % and 41.3 % in the optimization compared with the original case.
[1] L. Chai, G. D. Xia, and H. S. Wang, “Laminar flow and heat transfer characteristics of interrupted microchannel heat sink with ribs in the transverse microchambers,” International Journal of Thermal Sciences, vol. 110, pp. 1-11, 2016.
[2] D. B. Tuckermann and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electronic Device Letters, vol. 2, pp. 126-129, 1981.
[3] J. L. Xu, Y. H. Gan, D. C. Zhang, and X. H. Li, “Microscale heat transfer enhancement using thermal boundary layer redeveloping concept,” International Journal of Heat and Mass Transfer, vol. 48, pp. 1662-1674, 2005.
[4] J. L. Xu, Y. X. Song, W. Zhang, H. Zhang, and Y. H. Gan, “Numerical simulations of interrupted and conventional microchannel heat sinks,” International Journal of Heat and Mass Transfer, vol. 51, pp. 5906-5917, 2008.
[5] X. F. Peng and G. P. Peterson, “Forced convection heat transfer of single-phase binary mixtures through microchannels,” Experimental Thermal and Fluid Science, vol. 12, pp. 98-104, 1996.
[6] Y. F. Li, G. D. Xia, D. D. Ma, Y. T. Jia, and J. Wang, “Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs,” International Journal of Heat and Mass Transfer, vol. 98, pp. 17-28, 2016.
[7] G. D. Xia, Y. L. Zhai, and Z. Z. Cui, “Numerical investigation of thermal enhancement in a micro heat sink with fan-shaped reentrant cavities and internal ribs,” Applied Thermal Engineering, vol. 58, pp. 52-60, 2013.
[8] M. Dehghan, M. Daneshipour, M. S. Valipour, R. Rafee, and S. Saedodin, “Enhancing heat transfer in microchannel heat sinks using converging flow passages,” Energy Conversion and Management, vol. 92, pp. 244-250, 2015.
[9] H. Y. Wu, and P. Cheng, “Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios,” International Journal of Heat and Mass Transfer, vol. 46, pp. 2519-2525, 2003.
[10] S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME FED, vol.231/MD66, pp. 99-105, 1995.
[11] J. A. Eastman, U. S. Choi, S. Li, L. J. Thompson, and S. Lee, “Enhanced thermal conductivity through the development of nanofluids,” Materials Research Society Symposium-Proceedings, vol. 457, pp. 3-11, 1996.
[12] S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” ASME, Journal of Heat Transfer, vol. 121, pp. 280-289, 1999.
[13] H. Q. Xie, J. C. Wang, T. G. Xi, Y. Liu, F. Ai, and Q. R. Wu, “Thermal conductivity enhancement of suspensions containing nanosized alumina particles,” Journal of Applied Physics, vol. 91, pp. 4568-4572, 2002.
[14] Y. Xuan and Q. Li, “Investigation on convective heat transfer and flow features of nanofluids,” ASME, Journal of Heat Transfer, vol. 125, pp. 151-155, 2003.
[15] D. Wen and Y. Ding, “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” International Journal of Heat and Mass Transfer, vol. 47, pp. 51-81, 2004.
[16] S. M. S. Murshed, K. C. Leong, and C. Yang, “Enhanced thermal conductivity of TiO2/water-based nanofluids,” International Journal of Thermal Sciences, vol .44, pp. 367-373, 2005.
[17] D. H. Yoo, K. S. Hong, and H.S. Yang, “Study of thermal conductivity of nanofluids for the application of heat transfer fluids,” Thermochemica Acta, vol. 455, pp. 66-69, 2007.
[18] J. C. Maxwell, Electricity and Magnetism, 1st Ed., Clarendon Press, Oxford, England, 1873.
[19] S. E. B. Maiga, C. T. Nguyen, N. Galanis, and G. Roy, “Heat transfer behaviours of nanofluids in a uniformly heated tube,” Superlattices and Microstructures, vol. 35, pp. 543-557, 2004.
[20] A. Sakanova, C. C. Keian, and J. Zhao, “Performance improvements of microchannel heat sink using wavy channel and nanofluids,” International Journal of Heat and Mass Transfer, vol. 98, pp. 59-74, 2015.
[21] J. Lee and I. Mudawar, “Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels,” International Journal of Heat and Mass Transfer, vol. 50, pp. 452-463, 2007.
[22] N. Zhao, J. Yang, S. Li, and Q. Wang, “Numerical investigation of laminar thermal-hydraulic performance of Al2O3-water nanofluids in offset strip fins channel,” International Communications in Heat and Mass Transfer, vol. 75, pp. 42-51, 2016.
[23] A. Ijam, R. Saidur, and P. Ganesan, “Cooling of minichannel heat sink using nanofluids,” International Communications in Heat and Mass Transfer, vol. 39, pp. 1188-1194, 2012.
[24] M. Akbari, N. Galanis, and A. Behzadmehr, “Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer,” International Journal of Thermal Sciences, vol. 50, pp. 1343-1354, 2011.
[25] B. Fani, M. Kalteh, and A. Abbassi, “Investigating the effect of Brownian motion and viscous dissipation on the nanofluid heat transfer in a trapezoidal microchannel heat sink,” Advanced Powder Technology, vol. 26, pp. 83-90, 2015.
[26] K. M. Moraveji and R. M. Ardehali, “CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink,” International Communications in Heat and Mass Transfer, vol. 44, pp. 157-164, 2013.
[27] A. Moghadassi, E. Ghomi, and F. Parvizian, “A numerical study of water based Al2O3 and Al2O3-Cu hybrid nanofluid effect on forced convective heat transfer,” International Journal of Thermal Sciences, vol. 92, pp. 50-57, 2015.
[28] H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys. vol. 20, pp.571-581, 1952.
[29] A. Einstein, “Investigation on the theory of Brownian movement,” Dover, New York, 1956.
[30] A. L. Graham, “On the viscosity of suspensions of solid spheres,” Applied Scientific Research, vol. 37, pp. 275-286, 1981.
[31] C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Maré, S. Boucher, and H. A. Mintsa, “Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon,” International Journal of Heat and Fluid Flow, vol. 28, pp. 1492-1506, 2007.
[32] K.Y. Kim and D. Y. Shin, “Optimization of a staggered dimpled surface in a cooling channel using Kriging model,” International Journal of Thermal Sciences, vol. 47, pp. 1464-1472, 2008.
[33] H. M. Kim, M. A. Moom, and K. Y. Kim, “Multi-objective optimization of a cooling channel with staggered elliptic dimples,” Energy, vol. 36, pp. 3419-3428, 2011.
[34] A. Husain and K. Y. Kim, “Enhanced multi-objective optimization of a microchannel heat sink through evolutionary algorithm coupled with multiple surrogate models,” Applied Thermal Engineering, vol. 30, pp. 1683-1691, 2010.
[35] K. Kulkarni, A. Afzal, and K. Y. Kim, “Multi-objective optimization of a double-layered microchannel heat sink with temperature-dependent fluid properties,” Applied Thermal Engineering, vol. 99, pp. 262-272, 2016.
[36] Y. Wang, Y. L. He, D. H. Mei, and W. Q. Tao, “Optimization design of slotted fin by numerical simulation coupled with genetic algorithm,” Applied Energy, vol. 88, pp. 4441-4450, 2011.
[37] J. D. Bagley, The behavior of adaptive systems which employ genetic and correlation algorithms, University of Michigan, 1967.
[38] J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence: U Michigan Press, 1975.
[39] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning: Addison-Wesley Reading Menlo Park, 1989.
[40] L. Davis, Handbook of Genetic Algorithms: Van Nostrand Reinhold New York, 1991.
[41] J. R. Koza, Genetic Programming: On the Programming of computers by Means of Natural Selection: MIT press, 1992.
[42] A. Husain and K. Y. Kim, “Thermal optimization of a microchannel heat sink with trapezoidal cross section,” Journal of Electronic Packaging, vol. 131, 021005(1-6), 2009.
[43] A. Tohidi, S. M. Hosseinalipour, Z. Ghasemi Monfared, and A.S. Mujumdar, “Laminar heat transfer enhancement utilizing Nanofluids in a chaotic flow,” ASME Journal of Heat Transfer, vol. 136 (9), 091704, 2014.
[44] N. Masoumi, N. Sohrabi, and A. Behzadmehr, “A new model for calculating the effective viscosity of nanofluids,” Journal of Physics D: Applied Physics, vol. 42, 055501, 2009.
[45] M. Ishii and T. Hibiki, “Thermo-Fluid Dynamic Theory of Two-Phase Flow,” Paris: Eyrolles, 1975.
[46] M. Manninen, V. Taivassalo, S. Kallio, “On the Mixture Model for Multiphase Flow,” Technical Research Center of Finland, VTT Publications 288, 1996.
[47] L. Schiller and A. Naumann, “A drag coefficient correlation,” Zeitschrift des Vereins Deutscher Ingenieure, vol. 77, pp. 318-320, 1935.
[48] A. Miller and D. Gidaspow, “Dense, vertical gas-solid flow in a pipe,” AIChE Journal, vol. 38, pp. 1801-1815, 1992.
[49] S. V. Patankar, “Numerical Heat Transfer and Fluid Flow,” New York: McGraw-Hill, 1980.
[50] S. V. Patankar and D. B. Spalding, “A calculation process for heat, mass and momentum transfer in three-dimension parabolic flows,” International Journal Heat Mass Transfer, vol. 15 , pp. 1787-1806, 1972.
[51] G. E. P. Box and K. B. Wilson, “On the Experimental Attainment of Optimum Conditions,” Journal of the Royal Statistical Society. Series B (Methodological). vol. 13, pp. 1-45, 1951.
[52] J. D. Bagley, “The Behavior of Adaptive System which Employ Genetic and Correlation Algorithm,” Dissertation Abstracts International, vol.28, 5106B, 1967.
[53] K. A. De Jong, “Analysis of the Behavior of a Class of Genetic Adaptive Systems,” PhD Dissertation, University of Michigan, 1975.
[54] D. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-Wesley, 1989.
[55] L. D. Davis, “Handbook of Genetic Algorithms,” Van Nostrand Reinhold, 1991.
[56] J. R. Koza, “Genetic Programming, on the Programming of Computers by Means of Natural Selection, MIT Press, 1992.
[57] J. H. Holland, “Genetic algorithms and the optimal allocations of trials,” SIAM Journal of Computing, vol.2, pp.88-105, 1973.