| 研究生: |
周佳穎 Chou, Chia-Ying |
|---|---|
| 論文名稱: |
新穎金屬硫鹵族化合物之合成與鑑定 Syntheses and Characterizations of New Metal Chalcohalides |
| 指導教授: |
許桂芳
Hsu, Kuei-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 金屬硫鹵族化合物 、熱電材料 、垂直長晶法 |
| 外文關鍵詞: | metal chalcoiodides, thermoelectric materials, Bridgman method |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以高溫長晶法,在Bi-M-I-Se (M = Cu, Ag) 系統中,成功合成出四個等結構的新穎金屬硫鹵族化合物。以目標分子式Bi5Cu4-xAgxISe9 表示,四個等結構的化合物分別為Bi5Cu3.99(8)ISe9(1) (x = 0)、Bi5Cu3.74(6)Ag0.26(2)ISe9 (2) (x = 0.25)、Bi5Cu3.58(7)Ag0.37(2)ISe9 (3) (x = 0.5) 以及Bi5Cu3.30(7)Ag0.74(2)ISe9 (4) (x=0.75)。其晶系 (crystal system) 皆為Monoclinic C2/m,晶格常數 (cell constant) 分別為a = 35.820(5) Å,b = 4.1715(6) Å,c = 13.7374(18) Å,β = 109.462(2)°;a = 35.753(11) Å,b = 4.1619(13) Å,c = 13.738(4) Å,β = 109.391(4)°;a = 35.815(5) Å,b = 4.1632(5) Å,c = 13.7630(17) Å, β = 109.431(2)°;以及a = 35.811(4) Å,b = 4.1608(5) Å,c = 13.7618(15) Å, β = 109.380(2)°。而當Ag取代量x ≧ 1時,則發現其結構已轉變成其他的相,因此元素置換達到極限。
此系統化合物的三維結構可區分成兩個層狀區塊,其中組成包含了BiSe6八面體 (octahedra)、BiSe5四角錐體 (square pyramids)、CuI2Se2四面體 (tetrahedra) 、CuISe3四面體以及CuSe4四面體。結構中亦發現有Cu+錯排 (disorder) 的現象,因此預計其能展現出不錯的離子導體特性。化合物1測得的能係 (band gap) 值約為0.47 eV,是屬於一個窄能係的半導體材料。此外,此系統化合物具有很好的熱穩定性 (thermal stability),後續可利用垂直長晶法 (Bridgman method) 生成晶柱 (ingot)。未來將測量電導率 (σ, electrical conductivity)、熱電勢 (S, thermopower) 及熱傳導係數 (κ, thermal conductivity),預計朝熱電性質的方向做討論。
The new metal chalcoiodides system were synthesized with general formulas Bi5Cu4-xAgxISe9 by solid-state reactions at 400 °C. The introduction of Ag in the lattice of Bi5Cu4ISe9 is possible but only to a limited extent. Compounds 1, 2, 3, and 4 were found from the reactions targeted for x = 0, 0.25, 0.5, and 0.75, respectively. All of them are isostructural and crystallize in the same space group C2/m. A structurally modified phase was found from the reactions targeted for x ≧ 1. These series of compounds adopt a three-dimensional structure formed by two alternative layers, which consist of BiSe5 square pyramids, BiSe6 octahedra, CuI2Se2 tetrahedra, CuISe3 tetrahedra, and CuSe4 tetrahedra. In addtion, disorder of Cu+ cations was found in the structure, which may exhibit the property of ionic conductivity. The polycrystalline ingots were grown by Bridgman method. The measurement of thermoelectric properties, such as thermopower, electrical conductivity and thermal conductivity are undertaken.
[1] Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’quinn, B. Nature 2001, 413, 597.
[2] Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Science 2004, 303, 818.
[3] Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.;
Wang, D.; Muto, A.; Vashaee, D. Science 2008, 320, 634.
[4] Vining, C. B. Nat. Mater. 2009, 8, 83.
[5] DiSalvo, F. J. Science 1999, 285, 703.
[6] Tan, G.; Zhao, L. D.; Shi, F.; Doak, J. W.; Lo, S. H.; Sun, H.;Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. J. Am. Chem. Soc. 2014, 136, 7006.
[7] Sootsman, J. R.; Chung, D. Y.; Kanatzidis, M. G. ; Angew. Chem.
2009, 121, 8768
[8] Adam, A. Mater. Res. Bull. 2007, 42, 1986
[9] Tritt, T. M. Science, 1999, 283, 804
[10] Nada, Y.; Ohba, S.; Sato, S.; Saito, Y.; Acta Cryst. 1983, B39, 31
[11] Derakhshan, S.; Assoud, A.; Taylor, N. J. Kleinke, H.; Intermetallics 2006, 14, 198
[12] Mrotzek, A.; Chung, D.Y.; Hogan, T.; Kanatzidis, M. G. J. Mater. Chem., 2000, 10, 1667
[13] Chung, D. Y.; Choi, K. S.; Iordanidis, L.; Schindler, J. L.; Brazis, P. W.; Kannewurf, C. R.; Chen, B.; Hu, S.; Uher, C.; Kanatzidis, M. G.Chem. Mater. 1997, 9, 3060
[14] Chung, D. Y.; Hogan, T. P.; Rocci-Lane, M.; Brazis, P.; Ireland, J. R.; Kannewurf, C. R.; Bastea, M.; Uher, C.; Kanatzidis, M. G. J. Am. Chem. Soc, 2004, 126, 6414
[15] Androulakis, J.; Hsu, K. F.; Kong, H.; Uher, C.; D’Angelo, J. J.; Downey, A.; Hogan, T.; Kanatzidis, M. G. Adv. Mater. 2006, 18, 1170
[16] Prokofieva, L. V.; Pshenay-Severin, D. A.; Konstantinov, P. P.; Shabaldin, A. A. Semiconductors, 2009, 43, No. 8.
[17] Chung, D. Y.; Loo, S.; Uher, C.; Chen, W.; Dyck, J. S.; Kanatzidis, M. G. Chem. Mater. 2012, 24, 1854.
[18] Kim, J. H.; Chung, D. Y.; Bilc, D.; Loo, S.; Short, J.; Subhendra, D.; Mahanti.; Hogan, T.; Mercouri G.; Kanatzidis. Chem. Mater. 2005, 17, 3606.
[19] Korkosz, R. J.; Chasapis T. C.; Lo, S.H.; Doak, J. W.; Kim, Y. J.; Wu, C. I.;Hatzikraniotis , E.; Hogan, T. P.; Seidman, David. N.; Wolverton, C; Dravid, V. P.; Kanatzidis , M. G. J. Am. Chem. Soc. 2014, 136, 3225.
[20] Pfitzner, A.; Zimmerer, S. Angew. Chem. Int. Ed. Engl. 1997, 36, 982.
[21] Pfitzner, A. Chem. Eur. J. 1997, 3, 2032.
[22] Wang, L.; Hung, Y. C.; Hwu, S. J.; Koo, H. J.; Whagbo, M. H. Chem. Mater. 2006, 18, 1219.
[23] Wang, L.; Hwu, S. J. Chem. Mater. 2007, 19, 6212.
[24] Kulbachinskii, V. A.; Kytin, V. G.; Lavrukhina, Z. V.; Kuznetsov, A. N.; Shevelkov, A. V. Semiconductors 2010, 44, 1548.
[25] Kulbachinskii, V. A.; Kytin, V. G.; Kudryashov, A. A.; Kuznetsov, A. N.; Shevelkov, A. V. J. Solid State Chem. 2012, 193, 154.
[26] Sankar, R.; Muthuselvam, P.; Butler, C. J.; Liou, S. C.; Chen, B. H.; Chu, M. W.; Lee, W. L.; Lin, M. T.; Jayavel, R.; Chou, F. C. CrystEngComm 2014, 16, 8678.
[27] CRC Handbook of Thermoelectrics; Rowe, D. M., Ed.; CRC Press: Boca Raton, FL, 1995.
[28] APEX version 2008.2-0; Bruker Analytical X-ray Systems: Madison, WI, 2006.
[29] Sheldrick, G. M. SHELXTL-Plus NT crystallographic system, version 6.1; Bruker Analytical X-ray Systems: Madison, WI, 2000.
[30] McCusker, L. B.; Von Dreele, R. B.; Cox, D. E.; Louer, D.; Scardi, P. J. Appl. Cryst. 1999, 32, 36.
[31] (a) Tandon, S. P.; Gupta, J. P. Phys. Status Solidi 1970, 38, 363. (b) Kuo, S. M.; Chang, Y. M.; Chung, In; Jang, J. I.; Her, B, H.; Yang, S. H. Ketterson, J. B.; Kanatzidis, M. G., Hsu, K. F. Chem. Mater. 2013, 25, 2427.
[32] Heerwig, A.; Thybaut, C. L. J.; Ruck, M. Z. Anorg. Allg. Chem. 2010, 636, 2433.
[33] Heerwig, A.; Isaeva, A.; Ruck, M. Z. Anorg. Allg. Chem. 2011, 637, 1131.
[34] Balić-Žunić, T.; Mariolacos, K.; Friese, K.; Makovicky, E. Acta Cryst. 2005, B61, 239.
[35] Ohmasa, M.; Mariolacos, K. Acta Cryst. 1974, B30, 2640.
[36] Burdett, J. K.; Eisenstein, O. Inorg. Chem. 1992, 31, 1758.
[37] (a) Heerwig, A.; Ruck, M. Z. Anorg. Allg. Chem. 2009, 635, 2162. (b) Heerwig, A.; Ruck, M. Z. Anorg. Allg. Chem. 2010, 636, 1860.
[38] (a) M. Ruck, P. F. P. Poudeu, Z. Anorg. Allg. Chem. 2008, 634, 475 (b) M. Ruck, P. F. P. Poudeu, Z. Anorg. Allg. Chem. 2008, 634, 482.
[39] Lewis, J.; Kupčik, V. Acta Crystallogr., Sect. B 1974, 30, 848.
[40] Heerwig, A.; Müller, U.; Nitsche, F.; Ruck, M. Z. Anorg. Allg. Chem. 2012, 638, 1462.
[41] Heerwig, A.; Nitsche, F.; Ruck, M. Z. Anorg. Allg. Chem. 2011, 637, 62.
[42] Guin, S. N.; Pan, J.; Bhowmik, A.; Sanyal, D.; Waghmare, U. V.; Biswas, K. J. Am. Chem. Soc. 2014, 136, 12712.
[43] Liautard, B.; Garcia, J. C.; Brun, G.; Tedenac, J. C.; Maurin, M. Eur. J. Solid State Inorganic Chem. 1990, 27, 819.
[44] Tomeoka, K.; Ohmasa, M.; Sadanaga, R. Mineralogical Journal 1980, 10, 57.
校內:2020-08-18公開