簡易檢索 / 詳目顯示

研究生: 李權倍
Lee, Chuan-pei
論文名稱: 奈米多孔性二氧化鈦光電極微結構設計在量子點敏化太陽能電池的應用
Manipulation of Micro/Nano-structure of Mesoporous Titania Photoelecelectrodes for Quantum-Dots-sensitized Solar Cell
指導教授: 李玉郎
Lee, Yuh-lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 86
中文關鍵詞: 硫化鎘量子點染料敏化太陽能電池化學浸泡沉積法旋轉塗佈法光散射效應
外文關鍵詞: Cadmium sulfide quantum dot, Spin coating, Scattering effect, Dye-sensitized Solar Cells, Chemical bath deposition
相關次數: 點閱:97下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用硫化鎘量子點(CdS quantum dots)作為染料敏化太陽能電池(Dye-sensitized Solar Cells, DSSCs)的光敏化劑,使用化學浸泡沉積法(Chemical Bath Deposition, CBD),沉積硫化鎘量子點於二氧化鈦薄膜光電極上。本文重點在於利用旋轉塗佈法(spin coating),建構出具有微奈米多層結構的多孔性二氧化鈦薄膜光電極,以探討不同結構的二氧化鈦薄膜光電極,在硫化鎘量子點染料系統上,對電池效率的影響。實驗結果發現最外層組裝上的大粒徑二氧化鈦粒子(PT-501A,100nm),除了具有大孔洞特性以及光散射效應(Scattering effect)外,沉積在其上的硫化鎘量子點,對整體光電流的提升也有貢獻。在不同的光電極結構中ITO/6.5μm P25/3.7μm PT-501A(100nm)/CBD3之電池,具有最佳效率值1.14%,証實了此微奈米多層結構設計,也適用於量子點敏化太陽能電池效能之提升。

    In this study, cadmium sulfide quantum dots (CdS QDs) were used as a sensitizer of dye-sensitized Solar Cells (DSSCs). CdS QDs were deposited on the titania photoelectrodes using chemical bath deposition (CBD). Here, we focused on the discussion of cell efficiency for different structure titania photoelectrodes with micro/nano mutilayer porous structure made by spin coating method.From the experimental results, the assembly of the larger size titania particles (PT-501-A, 100nm) on the outer layer was not only with larger holes and scattering effect, but also with contribution to photocurrent by CdS QDs deposited on the larger size particles. In the different structures, ITO/6.5μm P25/3.7μm PT-501A(100nm)/CBD3 has the highest cell efficiency (1.14%). Therefore, micro/nano multilayer structure design of porous titania photoelectrodes was also suitable for improving cell performance of quantum dots dye-sensitized Solar Cells, attributed to the effect of scattering particles in enhancing the light harvesting efficiency.

    中文摘要 I Abstract II 誌謝 III 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 實驗原理與文獻回顧 4 2-1 太陽能電池簡介 4 2-1.1矽晶圓太陽能電池 4 2-1.2非晶系矽太陽能電池 5 2-1.3銅銦鎵二硒太陽能電池 6 2-1.4鎘碲薄膜太陽能電池 7 2-1.5矽薄膜太陽能電池 8 2-1.6染料敏化太陽能電池 9 2-2 染料敏化太陽能電池發展現況 10 2-3 染料敏化太陽能電池工作原理與組成結構 15 2-3.1透明導電玻璃 17 2-3.2二氧化鈦 17 2-3.3染料-光敏化劑 20 2-3.4電解液 21 2-3.5對電極 22 2-3.6 DSSC的組裝 23 2-4 太陽能電池電流電壓輸出特性 24 2-5 半導體奈米材料與量子點概述 28 2-6 化學浸泡沉積組裝量子點 33 2-7 多孔性二氧化鈦光電極微結構設計 34 第三章 實驗 37 3-1 實驗藥品 37 3-2 儀器設備 39 3-3 實驗流程 46 3-3.1 透明導電基板的清洗 47 3-3.2 TiO2 膠體溶液的配製 47 3-3.3 TiO2 多孔性薄膜光電極製備 48 3-3.4 CBD方法沈積CdS量子點 49 3-3.5 電池組裝 50 第四章 實驗數據與結果討論 52 4-1奈米多孔性TiO2薄膜光電極特性分析 52 4-1.1 TiO2薄膜厚度分析 52 4-1.2 TiO2相態分析 57 4-1.3 TiO2表面型態分析58 4-2 N719染料敏化太陽能電池組裝技術 61 4-3 CdS量子點特性分析 62 4-4單一粒徑(P25)光電極最佳厚度及CBD次數探討 64 4-4.1 CBD次數在不同P25厚度下之紫外/可見光光譜分析 64 4-4.2 CBD次數在不同P25厚度下之電流電壓曲線分析 65 4-5光散射效應分析 67 4-5.1 不同光散射層厚度之紫外/可見光光譜分析 67 4-5.2 不同光散射層厚度之IPCE分析 68 4-6太陽能電池的效能分析 69 第五章 結論 78 第六章 未來工作及建議 79 參考文獻 82 自述 86

    1.Gerischer H, Tributsch H. Ber. Bunsenges. Phys. Chem., 72, 437, 1968.
    2.B. O’Regan, M. Grätzel, Nature, 353, 737, 1991.
    3.M.Grätzel, Inorg. Chem., 44, 6841, 2005.
    4.W. Shockley, H. J. Queisser, J. Appl. Phys., 32, 510, 1961.
    5.F. Hurd, R. Livingston, J. Phys. Chem., 44, 865, 1940.
    6.H. Tsubomura, M. Matsumura, Y, Nomura, T. Amamiya, Nature , 261, 402, 1976.
    7.A. Hagfeldt, M. Grätzel, Acc. Chem. Res. , 33, 269, 2000.
    8.Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, J. Phys. Chem. B , 107, 8981, 2003.
    9.G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett., 6(2), 215, 2006.
    10.S. G. Chen, S. Chappel, Y. Diamant, A. Zaban, Chem. Mater., 13, 4629, 2001.
    11.H. Alarcón, G. Boschloo, P. Mendoza, J. L. Solis, A. Hagfeldt, J. Phys. Chem. B, 109, 18483, 2005.
    12.Y. Tian, T. Tatsuma, J. Am. Chem. Soc., 127, 7632, 2005.
    13.K. G. U. Wijayantha, L. M. Peter, L. C. Otley, Solar Energy Mater. & Solar Cells, 83, 363, 2004.
    14.J. Tang, H. Birkedal, E. W. McFarland, G. D. Stucky, Chem. Comm., 2278, 2003.
    15.D. Liu, P. V. Kamat, J. Phys. Chem., 97, 10769, 1993.
    16.I. Roble, V. Subramanian, M. Kuno, P. V. Kamat, J. Am. Chem. Soc., 128, 2385, 2006.
    17.Q. Shen, T. Toyoda, J. J. Appl. Phys., 43(5B), 2946, 2004.
    18.A. Zaban, O. I. Micic, B. A. Gregg, A. J. Nozik, Langmuir, 14, 3153, 1998.
    19.P. Hoyer, R. Könenkamp, Appl. Phys. Lett., 66(3), 349, 1995.
    20.R. Plass, S. Pelet, J. Krueger, M. Grätzel, J. Phys. Chem. B, 106, 7578, 2002.
    21.S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, Nature Mater., 4, 138, 2005.
    22.R. Vogel, P. Hoyer, H. Weller, J. Phys. Chem., 98, 3183, 1994.
    23.J. Krueger, U. Bach, M. Grätzel, Adv. Mater., 12(6), 447, 2000.
    24.M. Grätzel, Nature, 414, 338, 2001.
    25.K. Kalyanasundaram, M. Grätzel, Coordin. Chem. Rev., 177, 347, 1998.
    26.B. H. Kim, J. H. Ahn, J. H. Jeong, Y. S. Jeon, O. K. Jeon, K. S. Kwan, Ceram. Int., 32, 223, 2006.
    27.Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, J. Mater. Res., 20(1), 230, 2005.
    28.G. Wolfbauer, A. Bond, J. C. Eklund, D. R. MacFarlane, Solar Energy Mater. & Solar Cells, 70, 85, 2001.
    29.O. Kohle, M. Gratzel, A. F. Meyer, T. B. Meyer, Adv. Mater., 9(11), 904, 1997.
    30.J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, Appl. Phys. Lett., 79(13), 2085, 2001.
    31.高濂, 鄭珊, 張青紅, 奈米光觸媒, 五南圖書, 2004.
    32.W. W. Yu, X. Peng, Angew. Chem. Int. Ed., 41(13), 2368, 2002.
    33.Y. Wang, N. Herron, J. Phys. Chem., 95, 525, 1991.
    34.R. Rossetti, J. L. Ellison, J. M. Gibson, L. E. Brus, J. Chem. Phys., 80, 4464, 1983.
    35.W. W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater., 15, 2854, 2003.
    36.A. J. Nozik, Physica E, 14, 115, 2002.
    37.R. D. Schaller, V. I. Klimov, Phys. Rev. Lett., 92(18), 186601, 2004.
    38.I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisatos, Science, 310, 462, 2005.
    39.S. K. Haram, A. J. Bard, J. Phys. Chem. B, 105, 8192, 2001.
    40.M. L. Breen, J. T. Woodward, IV, D. K. Schwartz, Chem. Mater., 10, 710, 1998.
    41.P. O’Brien, J. McAleese, J. Mater. Chem., 8(11), 2309, 1998.
    42.J. L. Blackburn, D. C. Selmarten, A. J. Nozik, J. Phys. Chem. B, 107, 14154, 2003.
    43.C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, J. R. Heath, Science, 277, 1978, 1997.
    44.Z. Y. Pan, X. J. Liu, S. Y. Zhang, G. J. Shen, L. G. Zhang, Z. H. Lu, J. Z. Liu, J. Phys. Chem. B, 101, 9703, 1997.
    45.A. Samokhvalov, R. W. Gurney, M. Lahav, R. Naaman, J. Phys. Chem. B, 106, 9070, 2002.
    46.A. Samokhvalov, R. W. Gurney, M. Lahav, S. Cohen, H. Cohen, R. Naaman, J. Phys. Chem. B, 107, 4245, 2003.
    47.P. Jiang, Z. F. Liu, S. M. Cai, Langmuir, 18, 4495, 2002.
    48.M. Sastry, M. Rao, K. N. Ganesh, Acc. Chem. Res., 35, 847, 2002.
    49.L. Sheeney-Haj-Ichia, S. Pogorelova, Y. Gofer, I. Willner, Adv. Funct. Mater., 14(5), 416, 2004.
    50.L. Sheeney-Haj-Ichia, J. Wasserman, I. Willner, Adv. Mater., 14(18), 1323, 2002.
    51.L. Sheeney-Haj-Ichia, B. Basnar, I. Willner, Angew. Chem. Int. Ed., 44, 78, 2005.
    52.M. Lahav, V. H. Shabtai, J. Wasserman, E. Katz, I. Willner, H. Dürr, Y. Z. Hu, S. H. Bossmann, J. Am. Chem. Soc., 122, 11480, 2000.
    53.S. Besson, T. Gacoin, C. Ricolleau, C. Jacquiod, J. P. Boilot, Nano Lett., 2(4), 409, 2002.
    54.Connor, P. A.; Dobson, K. D.; McQuillan, A. J. Langmuir, 1995,11, 4193.
    55.Cherepy, N. J.; Smestad, G. P.; Gratzel, M.; Zhang, J. Z. J. Phys.Chem. B, 1997, 101, 9342.
    56.Ito, S.; Liska, P.; Comte, P. Chem. Commun., 2005, 4351.
    57.Peng, B.; Jungmann, G.; Ja¨ger, C.; Haarer, D.; Schmidt, H. W.;Thelakkat, M. Coord. Chem. ReV., 2004, 248, 1479.
    58.Cameron, P. J.; Peter, L. M. J. Phys. Chem. B, 2003, 107, 14394.
    59.Xia, J. B.; Masaki, N.; Jiang, K. J.; Wada, Y.; Yanagida, S. Chem.Lett., 2006, 35, 252.
    60.Kru¨ger, J.; Plass, R. v. C. L.; Piccirelli, M.; Gra¨tzel, M.; Bach, U.Appl. Phys. Lett., 2001, 79, 2085.
    61.Gregg, B. A.; Pichot, F.; Ferrere, S.; Fields, C. L. J. Phys. Chem.B, 2001, 105, 1422.
    62.Hart, J. N.; Menzies, D.; Cheng, Y. B.; Simon, G.; Spiccia, L. C.R. Chimie, 2006, 9, 622.
    63.Zaban, A.; Chen, S. G.; Chappel, S.; Gregg, B. A. Chem. Commun.,2000, 2231.
    64.Wang, Z. S.; Yanagida, M.; Sayama, K.; Sugihara, H. Chem. Mater.,2006, 18, 2912.
    65.Lee, S.; Kim, J. Y.; Hong, K. S.; Jung, H. S.; Lee, J. K.; Shin, H.Sol. Energy Mater. Sol. Cells, 2006, 90, 2405.
    66.Jung, H. S.; Lee, J. K.; Nastasi, M.; Lee, S. W.; Kim, J. Y.; Park,J. S.; Hong, K. S.; Shin, H. Langmuir, 2005, 21, 10332.
    67.Yum, J. H.; Nakade, S.; Kim, D. Y; Yanagida, S. J. Phys. Chem.B, 2006, 110, 3215.
    68.Zhong-Sheng W., Hiroshi K., Takeo K., Hironori A., Coordination Chemistry Reviews, 2004, 248, 1381–1389.
    69.Zhong-Sheng W., Masatoshi Y., Kazuhiro S., and Hideki S., Chem.Mater., 2006. 18, 5395-5397.
    70.Peng W., Shaik M. Z., Jacques-E. M., Robin H.B., and M. Grätzel, J. AM. CHEM. SOC., 2004, 126, 7164-7165.
    71.Peng W., Shaik M. Z., Robin H. B., and M. Grätzel, Chem. Mater., 2004, 16, 2694-2696.
    72.Nils M., Daibin K., Peng W., H. W. Schmidt, Shaik M. Z. and M. Grätzel, J. Mater. Chem., 2006, 16, 2978–2983.
    73.Yong Z., Jin Z., Shuxin T., LifangW., Lei J. and Daoben Z., Nanotechnology, 2006, 17, 2090–2097.
    74.Linhua H., Songyuan D., Jian W., Shangfeng X., Yifeng S., Yang H., Shuanghong C., Fantai K., Xu P., Linyun L., and Kongjia W., J. Phys. Chem. B., 2007, 111, 358-362.
    75.Alexander G. A., Ilkay C., Pascal C., M. K. Nazeeruddin, and M. Grätzel, Chem.Mater., 2006. 18, 5395-5397.
    76.C. C. Wang, J. Y. Ying, Chem. Mater., 1999, 11, 3113.
    77.Sun, B.; Vorontsov, A. V.; Smirniotis, P. G., Langmuir, 2003, 19, 3151-3156.
    78.N.G. Park, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B., 104, 8989, 2000.

    下載圖示 校內:2008-07-10公開
    校外:2008-07-10公開
    QR CODE