| 研究生: |
阮氏清雅 Nguyen Thi Thanh Nha |
|---|---|
| 論文名稱: |
系統性探討乳癌中TARBP2激活的分子路徑 Systemic Investigation of TARBP2-Activated Signaling Pathway in Breast Cancer |
| 指導教授: |
陳百昇
Chen, Pai-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | TARBP2 、AKT途徑 、乳腺癌 |
| 外文關鍵詞: | TARBP2, AKT pathway, breast cancer |
| 相關次數: | 點閱:47 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
TARBP2是一種RNA 結合蛋白,作為與Dicer 結合的輔因子參與 miRNA 加工。已知TARBP2的表達及其對不同癌細胞系的影響各不相同。與正常乳腺組織相比,乳腺癌中TARBP2的表達水平顯著更高。此外,轉移性乳腺癌有著更高的 TARBP2表現量。在先前的研究中,TARBP2表達水平在他莫昔芬抗藥性細胞株中堆積以促進Merlin-TARBP2通路上調SOX2。這些文獻指出TARBP2參與多面向的促癌功能,但目前並無針對TARBP2在乳腺癌中進行系統性分析以探討其調節的信號通路。在這項研究中,我們利用生物資訊學分析發現了TARBP2過表達的乳腺癌細胞中可能活化的訊息路徑。我們的實驗不但證實TARBP對訊息路徑的活化也進一步找出可能調控的目標基因。總結來說,本研究為一個鑑定出乳癌中TARBP2調控機制以及參與分子的先導成果。
TARBP2 was a RNA-binding protein that participates in miRNA processing as a cofactor binding to Dicer. The expression of TARBP2 varied as well as its effects on different cancer cell types. In breast cancer, TARBP2 level is significantly higher in cancer tissues comparing to normal counterparts. In addition, metastatic breast cancers expresses elevated TARBP2. In our previous study, the TARBP2 expression level was accumulated in tamoxifen-resistant breast cancer cells to upregulate SOX2 through Merlin-TARBP2 pathway. These evidences implies the multifaceted oncogenic functions regulated by TARBP2, but there is no systematic analysis to uncover TARBP2-regulated signaling pathway in breast cancer. In this study, we utilized bioinformatics analyses and found the activation of signaling pathways enriched in gene expression profile of TARBP2-overexpressed breast cancer cells. Our experiments not only showed that TARBP2 expression enhances the activation of signaling pathways in breast cancer cells, but also identified several target genes involved in signaling activation. Our study demonstrated that mechanism of TARBP2-induced AKT pathway was activated. Taken together, this is the pilot study discovered TARBP2-regulated molecular mechanisms and possible regulators in breast cancer.
1. Ferlay, J., et al., Cancer statistics for the year 2020: An overview. Int J Cancer, 2021.
2. Steelman, L.S., et al., JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia, 2004. 18(2): p. 189-218.
3. Dai, X., et al., Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes. J Cancer, 2016. 7(10): p. 1281-94.
4. Onitilo, A.A., et al., Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res, 2009. 7(1-2): p. 4-13.
5. Bayat Mokhtari, R., et al., Combination therapy in combating cancer. Oncotarget, 2017. 8(23): p. 38022-38043.
6. Arpino, G., et al., Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev, 2008. 29(2): p. 217-33.
7. Osborne, C.K. and R. Schiff, Mechanisms of endocrine resistance in breast cancer. Annu Rev Med, 2011. 62: p. 233-47.
8. Zhao, M. and B. Ramaswamy, Mechanisms and therapeutic advances in the management of endocrine-resistant breast cancer. World J Clin Oncol, 2014. 5(3): p. 248-62.
9. (EBCTCG), E.B.C.T.C.G., Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. The Lancet, 2011. 378(9793): p. 771-784.
10. Krauss, K. and E. Stickeler, Endocrine Therapy in Early Breast Cancer. Breast Care (Basel), 2020. 15(4): p. 337-346.
11. Carpenter, R. and W.R. Miller, Role of aromatase inhibitors in breast cancer. Br J Cancer, 2005. 93 Suppl 1: p. S1-5.
12. Bahrami, N., et al., The NEOLETEXE trial: a neoadjuvant cross-over study exploring the lack of cross resistance between aromatase inhibitors. Future Oncology, 2019. 15(32): p. 3675-3682.
13. Sulkes, A., The emerging role of the new aromatase inhibitors in the treatment of breast cancer. Isr Med Assoc J, 2005. 7(4): p. 257-61.
14. Masoud, V. and G. Pagès, Targeted therapies in breast cancer: New challenges to fight against resistance. World journal of clinical oncology, 2017. 8(2): p. 120-134.
15. den Hollander, P., M.I. Savage, and P.H. Brown, Targeted therapy for breast cancer prevention. Front Oncol, 2013. 3: p. 250.
16. Kreutzfeldt, J., et al., The trastuzumab era: current and upcoming targeted HER2+ breast cancer therapies. American journal of cancer research, 2020. 10(4): p. 1045-1067.
17. Schlam, I. and S.M. Swain, HER2-positive breast cancer and tyrosine kinase inhibitors: the time is now. NPJ Breast Cancer, 2021. 7(1): p. 56.
18. Almstedt, K. and M. Schmidt, Targeted Therapies Overcoming Endocrine Resistance in Hormone Receptor-Positive Breast Cancer. Breast Care (Basel), 2015. 10(3): p. 168-72.
19. Steelman, L.S., et al., The therapeutic potential of mTOR inhibitors in breast cancer. Br J Clin Pharmacol, 2016. 82(5): p. 1189-1212.
20. Baudino, T.A., Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Curr Drug Discov Technol, 2015. 12(1): p. 3-20.
21. Rodriguez, J., et al., Combining chemotherapy and targeted therapies in metastatic colorectal cancer. World journal of gastroenterology, 2007. 13(44): p. 5867-5876.
22. Johnson, D.H., Targeted therapies in combination with chemotherapy in non-small cell lung cancer. Clin Cancer Res, 2006. 12(14 Pt 2): p. 4451s-4457s.
23. Melo, S.A., et al., A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet, 2009. 41(3): p. 365-70.
24. Wilson, R.C., et al., Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell, 2015. 57(3): p. 397-407.
25. Roberts, T.C., The MicroRNA Biology of the Mammalian Nucleus. Mol Ther Nucleic Acids, 2014. 3: p. e188.
26. Daniels, S.M. and A. Gatignol, The multiple functions of TRBP, at the hub of cell responses to viruses, stress, and cancer. Microbiol Mol Biol Rev, 2012. 76(3): p. 652-66.
27. Yu, X. and Z. Li, The role of TARBP2 in the development and progression of cancers. Tumour Biol, 2016. 37(1): p. 57-60.
28. De Vito, C., et al., A TARBP2-dependent miRNA expression profile underlies cancer stem cell properties and provides candidate therapeutic reagents in Ewing sarcoma. Cancer Cell, 2012. 21(6): p. 807-21.
29. Chen, G., et al., Hypoxia-induced let-7f-5p/TARBP2 feedback loop regulates osteosarcoma cell proliferation and invasion by inhibiting the Wnt signaling pathway. Aging, 2020. 12(8): p. 6891-6903.
30. Bai, S., et al., Microsatellite instability and TARBP2 mutation study in upper urinary tract urothelial carcinoma. Am J Clin Pathol, 2013. 139(6): p. 765-70.
31. Goodarzi, H., et al., Metastasis-suppressor transcript destabilization through TARBP2 binding of mRNA hairpins. Nature, 2014. 513(7517): p. 256-60.
32. Caramuta, S., et al., Role of microRNAs and microRNA machinery in the pathogenesis of diffuse large B-cell lymphoma. Blood Cancer J, 2013. 3: p. e152.
33. de Sousa, G.R., et al., Low DICER1 expression is associated with poor clinical outcome in adrenocortical carcinoma. Oncotarget, 2015. 6(26): p. 22724-33.
34. Wang, M.Y., et al., TARBP2-Enhanced Resistance during Tamoxifen Treatment in Breast Cancer. Cancers (Basel), 2019. 11(2).
35. Lin, X., et al., Up-regulation and worse prognostic marker of cytoplasmic TARBP2 expression in obstinate breast cancer. Med Oncol, 2014. 31(4): p. 868.
36. Toker, A. and S. Marmiroli, Signaling specificity in the Akt pathway in biology and disease. Adv Biol Regul, 2014. 55: p. 28-38.
37. Hemmings, B.A. and D.F. Restuccia, PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol, 2012. 4(9): p. a011189.
38. Weako, J., et al., The structural basis of Akt PH domain interaction with calmodulin. Biophys J, 2021. 120(10): p. 1994-2008.
39. Liao, Y. and M.C. Hung, Physiological regulation of Akt activity and stability. Am J Transl Res, 2010. 2(1): p. 19-42.
40. Scheid, M.P. and J.R. Woodgett, Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Letters, 2003. 546(1): p. 108-112.
41. Nitulescu, G.M., et al., The Akt pathway in oncology therapy and beyond (Review). Int J Oncol, 2018. 53(6): p. 2319-2331.
42. Xu, F., et al., Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci, 2020. 10: p. 54.
43. Dillon, R.L., D.E. White, and W.J. Muller, The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer. Oncogene, 2007. 26(9): p. 1338-45.
44. Thorpe, L.M., H. Yuzugullu, and J.J. Zhao, PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer, 2015. 15(1): p. 7-24.
45. Miricescu, D., et al., PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects. Int J Mol Sci, 2020. 22(1).
46. Khan, K.H., et al., Targeting the PI3K-AKT-mTOR signaling network in cancer. Chinese journal of cancer, 2013. 32(5): p. 253-265.
47. Jiang, N., et al., Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep, 2020. 47(6): p. 4587-4629.
48. Hernandez-Aya, L.F. and A.M. Gonzalez-Angulo, Targeting the phosphatidylinositol 3-kinase signaling pathway in breast cancer. Oncologist, 2011. 16(4): p. 404-14.
49. Mayo, L.D. and D.B. Donner, A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A, 2001. 98(20): p. 11598-603.
50. Liang, J. and J.M. Slingerland, Multiple Roles of the PI3K/PKB (Akt) Pathway in Cell Cycle Progression. Cell Cycle, 2014. 2(4): p. 336-342.
51. Chang, F., et al., Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 2003. 17(3): p. 590-603.
52. Zoncu, R., A. Efeyan, and D.M. Sabatini, mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol, 2011. 12(1): p. 21-35.
53. Vivanco, I. and C.L. Sawyers, The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer, 2002. 2(7): p. 489-501.
54. Fruman, D.A., et al., The PI3K Pathway in Human Disease. Cell, 2017. 170(4): p. 605-635.
55. Yuan, J., et al., The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. Journal of Hematology & Oncology, 2020. 13(1): p. 113.
56. Zhang, W. and H.T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research, 2002. 12(1): p. 9-18.
57. Cordover, E. and A. Minden, Signaling pathways downstream to receptor tyrosine kinases: targets for cancer treatment. Journal of Cancer Metastasis and Treatment, 2020. 6: p. 45.
58. Dhillon, A.S., et al., MAP kinase signalling pathways in cancer. Oncogene, 2007. 26(22): p. 3279-3290.
59. McCubrey, J.A., et al., Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et biophysica acta, 2007. 1773(8): p. 1263-1284.
60. Sever, R. and J.S. Brugge, Signal transduction in cancer. Cold Spring Harbor perspectives in medicine, 2015. 5(4): p. a006098.
61. Braicu, C., et al., A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers, 2019. 11(10): p. 1618.
62. Roberts, P.J. and C.J. Der, Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007. 26(22): p. 3291-3310.
63. Wang, X., H. Zhang, and X. Chen, Drug resistance and combating drug resistance in cancer. Cancer Drug Resistance, 2019.
64. Housman, G., et al., Drug resistance in cancer: an overview. Cancers (Basel), 2014. 6(3): p. 1769-92.
65. Mansoori, B., et al., The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv Pharm Bull, 2017. 7(3): p. 339-348.
66. Luque-Bolivar, A., et al., Resistance and Overcoming Resistance in Breast Cancer. Breast Cancer (Dove Med Press), 2020. 12: p. 211-229.
67. (EBCTCG), E.B.C.T.C.G., Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet, 2005. 365(9472): p. 1687-717.
68. Fan, W., J. Chang, and P. Fu, Endocrine therapy resistance in breast cancer: current status, possible mechanisms and overcoming strategies. Future Med Chem, 2015. 7(12): p. 1511-9.
69. Clarke, R., J.J. Tyson, and J.M. Dixon, Endocrine resistance in breast cancer--An overview and update. Mol Cell Endocrinol, 2015. 418 Pt 3: p. 220-34.
70. Haque, M.M. and K.V. Desai, Pathways to Endocrine Therapy Resistance in Breast Cancer. Front Endocrinol (Lausanne), 2019. 10: p. 573.
71. Hasson, S.P., et al., Endocrine resistance in breast cancer: focus on the phosphatidylinositol 3-kinase/akt/mammalian target of rapamycin signaling pathway. Breast Care (Basel), 2013. 8(4): p. 248-55.
72. Pernas, S. and S.M. Tolaney, HER2-positive breast cancer: new therapeutic frontiers and overcoming resistance. Ther Adv Med Oncol, 2019. 11: p. 1758835919833519.
73. Keegan, N.M., et al., PI3K inhibition to overcome endocrine resistance in breast cancer. Expert Opin Investig Drugs, 2018. 27(1): p. 1-15.
74. Verret, B., et al., Efficacy of PI3K inhibitors in advanced breast cancer. Annals of Oncology, 2019. 30: p. x12-x20.
75. Dong, C., et al., Activation of PI3K/AKT/mTOR Pathway Causes Drug Resistance in Breast Cancer. Front Pharmacol, 2021. 12: p. 628690.
76. Asati, V., D.K. Mahapatra, and S.K. Bharti, PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur J Med Chem, 2016. 109: p. 314-41.
77. Yang, J., et al., Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer, 2019. 18(1): p. 26.
78. Cidado, J. and B.H. Park, Targeting the PI3K/Akt/mTOR pathway for breast cancer therapy. J Mammary Gland Biol Neoplasia, 2012. 17(3-4): p. 205-16.
79. Guerrero-Zotano, A., I.A. Mayer, and C.L. Arteaga, PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment. Cancer Metastasis Rev, 2016. 35(4): p. 515-524.
80. Chandarlapaty, S., et al., Frequent mutational activation of the PI3K-AKT pathway in trastuzumab-resistant breast cancer. Clin Cancer Res, 2012. 18(24): p. 6784-91.
81. Zhong, J.T., et al., Effects of endoplasmic reticulum stress on the autophagy, apoptosis, and chemotherapy resistance of human breast cancer cells by regulating the PI3K/AKT/mTOR signaling pathway. Tumour Biol, 2017. 39(5): p. 1010428317697562.
82. Liu, R., et al., PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis, 2020. 11(9): p. 797.
83. Fujimoto, Y., et al., Combination treatment with a PI3K/Akt/mTOR pathway inhibitor overcomes resistance to anti-HER2 therapy in PIK3CA-mutant HER2-positive breast cancer cells. Sci Rep, 2020. 10(1): p. 21762.
84. Lee, J.J., K. Loh, and Y.S. Yap, PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol Med, 2015. 12(4): p. 342-54.
85. Burris, H.A., 3rd, Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother Pharmacol, 2013. 71(4): p. 829-42.
86. Guo, Y.J., et al., ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med, 2020. 19(3): p. 1997-2007.
87. Li, J., et al., Characteristics of the PI3K/AKT and MAPK/ERK pathways involved in the maintenance of self-renewal in lung cancer stem-like cells. Int J Biol Sci, 2021. 17(5): p. 1191-1202.
88. Okada, T., et al., BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity, 2000. 13(6): p. 817-27.
89. Pongas, G. and B.D. Cheson, PI3K signaling pathway in normal B cells and indolent B-cell malignancies. Semin Oncol, 2016. 43(6): p. 647-654.
90. Zhang, F., et al., A miR-567-PIK3AP1-PI3K/AKT-c-Myc feedback loop regulates tumour growth and chemoresistance in gastric cancer. EBioMedicine, 2019. 44: p. 311-321.
91. Hao, Y. and G. Li, Role of EFNA1 in tumorigenesis and prospects for cancer therapy. Biomed Pharmacother, 2020. 130: p. 110567.
92. Tanabe, S., et al., Molecular pathway network of EFNA1 in cancer and mesenchymal stem cells. AIMS Cell and Tissue Engineering, 2018. 2(2): p. 58-77.
93. Yeddula, N., et al., Screening for tumor suppressors: Loss of ephrin receptor A2 cooperates with oncogenic KRas in promoting lung adenocarcinoma. Proc Natl Acad Sci U S A, 2015. 112(47): p. E6476-85.
94. Shi, Y., et al., shRNAmediated silencing of TARBP2 inhibits NCIH1299 nonsmall cell lung cancer cell invasion and migration via the JNK/STAT3/AKT pathway. Mol Med Rep, 2016. 14(4): p. 3725-30.
95. Lai, H.H., et al., TARBP2-mediated destabilization of Nanog overcomes sorafenib resistance in hepatocellular carcinoma. Mol Oncol, 2019. 13(4): p. 928-945.
96. Holzman, L.B., R.M. Marks, and V.M. Dixit, A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein. Mol Cell Biol, 1990. 10(11): p. 5830-8.
97. Nakamura, R., et al., EPHA2/EFNA1 expression in human gastric cancer. Cancer Sci, 2005. 96(1): p. 42-7.
98. Shi, Z.-Z., et al., Genomic profiling of rectal adenoma and carcinoma by array-based comparative genomic hybridization. BMC Medical Genomics, 2012. 5(1): p. 52.
99. Cui, X.D., et al., EFNA1 ligand and its receptor EphA2: potential biomarkers for hepatocellular carcinoma. Int J Cancer, 2010. 126(4): p. 940-9.
100. Zhao, M., et al., A Five-Genes-Based Prognostic Signature for Cervical Cancer Overall Survival Prediction. Int J Genomics, 2020. 2020: p. 8347639.
101. Herath, N.I., et al., Over-expression of Eph and ephrin genes in advanced ovarian cancer: ephrin gene expression correlates with shortened survival. BMC Cancer, 2006. 6: p. 144.
102. Easty, D.J., et al., Up-regulation of ephrin-A1 during melanoma progression. Int J Cancer, 1999. 84(5): p. 494-501.
103. Yang, P.W., et al., The effect of ephrin-A1 on resistance to Photofrin-mediated photodynamic therapy in esophageal squamous cell carcinoma cells. Lasers Med Sci, 2015. 30(9): p. 2353-61.
104. Gordon, K., et al., Alteration of the EphA2/Ephrin-A signaling axis in psoriatic epidermis. J Invest Dermatol, 2013. 133(3): p. 712-722.
105. Ma, T.T., et al., Hypoxia-Induced Cleavage Of Soluble ephrinA1 From Cancer Cells Is Mediated By MMP-2 And Associates With Angiogenesis In Oral Squamous Cell Carcinoma. Onco Targets Ther, 2019. 12: p. 8491-8499.
106. Song, Y., et al., Ephrin-A1 is up-regulated by hypoxia in cancer cells and promotes angiogenesis of HUVECs through a coordinated cross-talk with eNOS. PLoS One, 2013. 8(9): p. e74464.
107. Beauchamp, A., et al., EphrinA1 is released in three forms from cancer cells by matrix metalloproteases. Mol Cell Biol, 2012. 32(16): p. 3253-64.
108. Ieguchi, K. and Y. Maru, Roles of EphA1/A2 and ephrin-A1 in cancer. Cancer Sci, 2019. 110(3): p. 841-848.
109. Beauchamp, A. and W. Debinski, Ephs and ephrins in cancer: ephrin-A1 signalling. Semin Cell Dev Biol, 2012. 23(1): p. 109-15.
110. Xi, H.Q., et al., Eph receptors and ephrins as targets for cancer therapy. J Cell Mol Med, 2012. 16(12): p. 2894-909.
111. Braicu, C., et al., A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers (Basel), 2019. 11(10).
112. Yang, M. and C.Z. Huang, Mitogen-activated protein kinase signaling pathway and invasion and metastasis of gastric cancer. World J Gastroenterol, 2015. 21(41): p. 11673-9.
113. Sunayama, J., et al., Crosstalk between the PI3K/mTOR and MEK/ERK pathways involved in the maintenance of self-renewal and tumorigenicity of glioblastoma stem-like cells. Stem Cells, 2010. 28(11): p. 1930-9.
114. Wang, C., et al., Functional crosstalk between AKT/mTOR and Ras/MAPK pathways in hepatocarcinogenesis: implications for the treatment of human liver cancer. Cell Cycle, 2013. 12(13): p. 1999-2010.
115. Chung, J., et al., PDGF- and insulin-dependent pp70S6k activation mediated by phosphatidylinositol-3-OH kinase. Nature, 1994. 370(6484): p. 71-75.
116. Zhou, J., et al., Crosstalk Between MAPK/ERK and PI3K/AKT Signal Pathways During Brain Ischemia/Reperfusion. ASN Neuro, 2015. 7(5).
117. Aksamitiene, E., A. Kiyatkin, and Boris N. Kholodenko, Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochemical Society Transactions, 2012. 40(1): p. 139-146.
118. Cao, Z., et al., AKT and ERK dual inhibitors: The way forward? Cancer Letters, 2019. 459: p. 30-40.
119. Kim, D.H., et al., mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 2002. 110(2): p. 163-75.
120. Sarbassov, D.D., et al., Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol, 2004. 14(14): p. 1296-302.
121. Tian, T., X. Li, and J. Zhang, mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. Int J Mol Sci, 2019. 20(3).
122. Laplante, M. and D.M. Sabatini, mTOR signaling in growth control and disease. Cell, 2012. 149(2): p. 274-93.
123. Shi, X., et al., Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Mol Med Rep, 2019. 19(6): p. 4529-4535.
124. Hay, N. and N. Sonenberg, Upstream and downstream of mTOR. Genes Dev, 2004. 18(16): p. 1926-45.
125. Harding, J.J., et al., Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin Cancer Res, 2019. 25(7): p. 2116-2126.
126. Rubinstein, M.M., et al., Phase 2 study of LY3023414 in patients with advanced endometrial cancer harboring activating mutations in the PI3K pathway. Cancer, 2020. 126(6): p. 1274-1282.
127. De Marco, C., et al., Multiple genetic alterations within the PI3K pathway are responsible for AKT activation in patients with ovarian carcinoma. PLoS One, 2013. 8(2): p. e55362.
128. Chen, S., et al., Inhibition of PI3K/Akt/mTOR signaling in PI3KR2-overexpressing colon cancer stem cells reduces tumor growth due to apoptosis. Oncotarget, 2017. 8(31): p. 50476-50488.
129. Yao, Y., et al., GLI1 overexpression promotes gastric cancer cell proliferation and migration and induces drug resistance by combining with the AKT-mTOR pathway. Biomed Pharmacother, 2019. 111: p. 993-1004.
130. Zou, Z., et al., mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci, 2020. 10: p. 31.
131. Wright, S.C.E., et al., Mechanisms of Resistance to PI3K Inhibitors in Cancer: Adaptive Responses, Drug Tolerance and Cellular Plasticity. Cancers (Basel), 2021. 13(7).
校內:不公開