| 研究生: |
陳思綺 Chen, Si-Chi |
|---|---|
| 論文名稱: |
廢水重金屬吸附後殼聚醣作為永續 SERS 基板之應
用研究 Application of Chitosan for Adsorption of Heavy Metals in Wastewater as Sustainable SERS Substrate |
| 指導教授: |
施士塵
Shi, Shih-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 殼聚醣 、SERS 、奈米粒子 、農藥檢測 、塑膠微粒檢測 |
| 外文關鍵詞: | Chitosan, Copper nanoparticles, SERS, Pesticide, Plastic particles |
| 相關次數: | 點閱:78 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業廢水造成嚴重的重金屬污染,容易透過飲食累積過量重金屬離子於人體內引起疾病。因此本研究以殼聚醣吸附水中重金屬離子,並透過綠色製程合成殼聚醣金屬粒子複合材料加以應用。
表面增強拉曼光譜法 (Surface Enhanced Raman Spectroscopy, SERS) 技術因具有快速檢測與所需分析樣品量少的優點,受到廣泛應用,而其檢測效能受到 SERS 基板表面金屬之粒徑與分佈影響,本研究藉由殼聚醣之封端劑與穩定劑特性,控制金屬粒徑、間距與分散性提升檢測強度,再以甘油做為增塑劑改善薄膜性質,不須使用額外材料便可作為 SERS 基板,成功開發具環保永續性之材料。
農產品進出口貿易量大但檢測耗時,常使農藥殘留量超標之作物流入市面危害消費者食品安全,故須加速檢測流程。除了農藥檢測以外,本研究也希望能解決塑膠奈米顆粒危害。塑膠微粒不僅容易成為污染源載體,若經由呼吸道進入肺中可能損傷人體安全。因此本研究選擇納乃得 Methomyl 農藥與聚甲基丙烯酸甲酯 (poly [1-(methoxy carbonyl)-1-methyl ethylene], PMMA) 塑膠微粒作為檢測項目。
本研究以殼聚醣還原金銀銅三種奈米粒子,以綠色天然還原劑抗壞血酸加速反應進行,並改變反應酸鹼值與殼聚醣濃度,在 pH 2 與 2 wt.% 殼聚醣濃度之環境下還原出具有最小粒徑的銅奈米粒子,添加 3 % 甘油後成功成膜且銅粒子良好分散於薄膜當中。
以此基板進行 Methomyl 農藥水溶液與 PMMA 塑膠微粒粉末之 SERS 檢測,均可達到 103 以上之增強因子,但殼聚醣在滴加液體後因吸水性使薄膜捲曲,較難對焦檢測,因此在檢測固態樣品之效果優於液態樣品。
The concept of circular economy has attracted a lot of research interest because it can achieve waste reduction goals. Using chitosan, a natural and abundant material with biodegradable and environmentally friendly advantages, absorbs heavy metal ions in water, and reduces metal nanocomposite materials in a green process, and develops it into a new SERS substrate to detect pesticides that are harmful to human body and the environment. with microplastic molecules. This research proposes a method that can simultaneously solve the problems of heavy metal pollution, pesticides, and plastic particles, and achieve the goals of waste recycling and energy recycling.
In this study, the size and distribution of metal nanoparticles are controlled by the capping agent and stabilizer properties of chitosan, and a thin film with good dispersion of metal nanoparticles is formed as a SERS substrate through glycerin, which can make the electromagnetic field around the hot spot greatly increase. Enhanced, the SERS detection enhancement factor is increased to more than 103, and the lowest detection limit can reach 0.001 ppm in the SERS detection of pesticides and plastic particles.
[1] P. Kanmani, J. Aravind, M. Kamaraj, P. Sureshbabu, and S. Karthikeyan, "Environmental applications of chitosan and cellulosic biopolymers: A comprehensive outlook," Bioresource Technology, vol. 242, pp. 295-303, 2017.
[2] Y. Li, C. Yang, S. Wang, D. Yang, Y. Zhang, L. Xu, L. Ma, J. Zheng, R. B. Petersen, and L. Zheng, "Copper and iron ions accelerate the prion-like propagation of α-synuclein: a vicious cycle in Parkinson's disease," International Journal of Biological Macromolecules, vol. 163, pp. 562-573, 2020.
[3] R. Squitti, C. Salustri, M. Rongioletti, and M. Siotto, "Commentary: The case for abandoning therapeutic chelation of copper ions in Alzheimer’s disease," Frontiers in Neurology, vol. 8, p. 503, 2017.
[4] E. Salehi, P. Daraei, and A. A. Shamsabadi, "A review on chitosan-based adsorptive membranes," Carbohydrate polymers, vol. 152, pp. 419-432, 2016.
[5] J. Cooper and H. Dobson, "The benefits of pesticides to mankind and the environment," Crop Protection, vol. 26, no. 9, pp. 1337-1348, 2007.
[6] R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, "A review on surface-enhanced Raman scattering," Biosensors, vol. 9, no. 2, p. 57, 2019.
[7] P. Rostron, S. Gaber, and D. Gaber, "Raman spectroscopy, review," laser, vol. 21, p. 24, 2016.
[8] S. Shi and W. Huang, "Evaluation of photodynamic inactivation efficiency using conventional and decorative light-emitting diode lamps," Sens. Mater, vol. 29, pp. 1569-1577, 2017.
[9] B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, "SERS: Materials, applications, and the future," Materials today, vol. 15, no. 1-2, pp. 16-25, 2012.
[10] Z. Lin, W. Zhang, S. Pang, Y. Huang, S. Mishra, P. Bhatt, and S. Chen, "Current approaches to and future perspectives on methomyl degradation in contaminated soil/water environments," Molecules, vol. 25, no. 3, p. 738, 2020.
[11] M. Shalaby, H. El Zorba, and R. M. Ziada, "Reproductive toxicity of methomyl insecticide in male rats and protective effect of folic acid," Food and Chemical Toxicology, vol. 48, no. 11, pp. 3221-3226, 2010.
[12] U. Ali, K. J. B. A. Karim, and N. A. Buang, "A review of the properties and applications of poly (methyl methacrylate)(PMMA)," Polymer Reviews, vol. 55, no. 4, pp. 678-705, 2015.
[13] A. Van Hoonacker and P. Englebienne, "Revisiting silver nanoparticle chemical synthesis and stability by optical spectroscopy," Current Nanoscience, vol. 2, no. 4, pp. 359-371, 2006.
[14] I. Pastoriza-Santos and L. M. Liz-Marzán, "Reduction of silver nanoparticles in DMF. Formation of monolayers and stable colloids," Pure and Applied Chemistry, vol. 72, no. 1/2, pp. 83-90, 2000.
[15] J. A. Jacob, S. Kapoor, N. Biswas, and T. Mukherjee, "Size tunable synthesis of silver nanoparticles in water–ethylene glycol mixtures," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 301, no. 1-3, pp. 329-334, 2007.
[16] K. P. Velikov, G. E. Zegers, and A. van Blaaderen, "Synthesis and characterization of large colloidal silver particles," Langmuir, vol. 19, no. 4, pp. 1384-1389, 2003.
[17] P. Raveendran, J. Fu, and S. L. Wallen, "Completely “green” synthesis and stabilization of metal nanoparticles," Journal of the American Chemical Society, vol. 125, no. 46, pp. 13940-13941, 2003.
[18] S. Panigrahi, S. Kundu, S. Ghosh, S. Nath, and T. Pal, "General method of synthesis for metal nanoparticles," Journal of nanoparticle Research, vol. 6, no. 4, pp. 411-414, 2004.
[19] F.-K. Liu, Y.-C. Hsu, M.-H. Tsai, and T.-C. Chu, "Using γ-irradiation to synthesize Ag nanoparticles," Materials Letters, vol. 61, no. 11-12, pp. 2402-2405, 2007.
[20] R. Salkar, P. Jeevanandam, S. Aruna, Y. Koltypin, and A. Gedanken, "The sonochemical preparation of amorphous silver nanoparticles," Journal of materials chemistry, vol. 9, no. 6, pp. 1333-1335, 1999.
[21] H. Jiang, L. Zhu, K.-s. Moon, and C. Wong, "The preparation of stable metal nanoparticles on carbon nanotubes whose surfaces were modified during production," Carbon, vol. 45, no. 3, pp. 655-661, 2007.
[22] L. M. Hoyos-Palacio, D. P. C. Castro, I. C. Ortiz-Trujillo, L. E. B. Palacio, B. J. G. Upegui, N. J. E. Mora, and J. A. C. Cornelio, "Compounds of carbon nanotubes decorated with silver nanoparticles via in-situ by chemical vapor deposition (CVD)," Journal of materials research and technology, vol. 8, no. 6, pp. 5893-5898, 2019.
[23] Y. Yin and A. P. Alivisatos, "Colloidal nanocrystal synthesis and the organic–inorganic interface," Nature, vol. 437, no. 7059, pp. 664-670, 2005.
[24] S. Campisi, M. Schiavoni, C. E. Chan-Thaw, and A. Villa, "Untangling the role of the capping agent in nanocatalysis: recent advances and perspectives," Catalysts, vol. 6, no. 12, p. 185, 2016.
[25] P. Fedorko, D. Djurado, M. Trznadel, B. Dufour, P. Rannou, and J. Travers, "Insulator-Metal transition in Polyaniline induced by plasticizers," Synthetic metals, vol. 135, pp. 327-328, 2003.
[26] R. Jamarani, H. C. Erythropel, J. A. Nicell, R. L. Leask, and M. Marić, "How green is your plasticizer?," Polymers, vol. 10, no. 8, p. 834, 2018.
[27] M. Rahman and C. S. Brazel, "The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges," Progress in polymer science, vol. 29, no. 12, pp. 1223-1248, 2004.
[28] M. Rinaudo, "Chitin and chitosan: Properties and applications," Progress in polymer science, vol. 31, no. 7, pp. 603-632, 2006.
[29] A. Il’Ina and V. Varlamov, "Chitosan-based polyelectrolyte complexes: a review," Applied Biochemistry and Microbiology, vol. 41, no. 1, pp. 5-11, 2005.
[30] V. K. Thakur and M. K. Thakur, "Recent advances in graft copolymerization and applications of chitosan: a review," ACS Sustainable Chemistry & Engineering, vol. 2, no. 12, pp. 2637-2652, 2014.
[31] L. Qian and H. Zhang, "Green synthesis of chitosan-based nanofibers and their applications," Green Chemistry, vol. 12, no. 7, pp. 1207-1214, 2010.
[32] Y. Zhang, B.-L. Liu, L.-J. Wang, Y.-H. Deng, S.-Y. Zhou, and J.-W. Feng, "Preparation, structure and properties of acid aqueous solution plasticized thermoplastic chitosan," Polymers, vol. 11, no. 5, p. 818, 2019.
[33] A. Saravanan, P. S. Kumar, S. Karishma, D.-V. N. Vo, S. Jeevanantham, P. Yaashikaa, and C. S. George, "A review on biosynthesis of metal nanoparticles and its environmental applications," Chemosphere, vol. 264, p. 128580, 2021.
[34] N. M. Zain, A. G. Stapley, and G. Shama, "Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications," Carbohydrate polymers, vol. 112, pp. 195-202, 2014.
[35] A. P. Carapeto, A. M. Ferraria, and A. M. B. do Rego, "Unraveling the reaction mechanism of silver ions reduction by chitosan from so far neglected spectroscopic features," Carbohydrate polymers, vol. 174, pp. 601-609, 2017.
[36] M. S. Usman, N. A. Ibrahim, K. Shameli, N. Zainuddin, and W. M. Z. W. Yunus, "Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods," Molecules, vol. 17, no. 12, pp. 14928-14936, 2012.
[37] T. T. V. Phan, D. T. Phan, X. T. Cao, T.-C. Huynh, and J. Oh, "Roles of chitosan in green synthesis of metal nanoparticles for biomedical applications," Nanomaterials, vol. 11, no. 2, p. 273, 2021.
[38] A. Franconetti, J. M. Carnerero, R. Prado-Gotor, F. Cabrera-Escribano, and C. Jaime, "Chitosan as a capping agent: Insights on the stabilization of gold nanoparticles," Carbohydrate polymers, vol. 207, pp. 806-814, 2019.
[39] P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, "Searching for better plasmonic materials," Laser & photonics reviews, vol. 4, no. 6, pp. 795-808, 2010.
[40] G. Kumari, J. Kandula, and C. Narayana, "How far can we probe by SERS?," The Journal of Physical Chemistry C, vol. 119, no. 34, pp. 20057-20064, 2015.
[41] 徐世宇, "以碎形理論分析奈米金SERS基版之研究," 碩士, 機械工程學系, 國立成功大學, 台南市, 2020.
[42] S. E. Bell, G. Charron, E. Cortés, J. Kneipp, M. L. de la Chapelle, J. Langer, M. Prochazka, V. Tran, and S. Schlücker, "Towards reliable and quantitative surface‐enhanced Raman scattering (SERS): From key parameters to good analytical practice," Angewandte Chemie International Edition, vol. 59, no. 14, pp. 5454-5462, 2020.
[43] I. Leceta, P. Guerrero, and K. De La Caba, "Functional properties of chitosan-based films," Carbohydrate polymers, vol. 93, no. 1, pp. 339-346, 2013.
[44] M. J. Bof, V. C. Bordagaray, D. E. Locaso, and M. A. García, "Chitosan molecular weight effect on starch-composite film properties," Food hydrocolloids, vol. 51, pp. 281-294, 2015.
[45] C. Sun, R. Qu, H. Chen, C. Ji, C. Wang, Y. Sun, and B. Wang, "Degradation behavior of chitosan chains in the ‘green’synthesis of gold nanoparticles," Carbohydrate research, vol. 343, no. 15, pp. 2595-2599, 2008.
[46] K.-q. Sun, F.-y. Li, J.-y. Li, J.-f. Li, C.-w. Zhang, S. Chen, X. Sun, and J.-f. Cui, "Optimisation of compatibility for improving elongation at break of chitosan/starch films," RSC advances, vol. 9, no. 42, pp. 24451-24459, 2019.
[47] W. Xiao, Z. Deng, J. Huang, Z. Huang, M. Zhuang, Y. Yuan, J. Nie, and Y. Zhang, "Highly sensitive colorimetric detection of a variety of analytes via the Tyndall effect," Analytical chemistry, vol. 91, no. 23, pp. 15114-15122, 2019.
[48] M. G. Guzmán, J. Dille, and S. Godet, "Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity," Int J Chem Biomol Eng, vol. 2, no. 3, pp. 104-111, 2009.
[49] D. K. Bhui, H. Bar, P. Sarkar, G. P. Sahoo, S. P. De, and A. Misra, "Synthesis and UV–vis spectroscopic study of silver nanoparticles in aqueous SDS solution," Journal of Molecular Liquids, vol. 145, no. 1, pp. 33-37, 2009.
[50] Q. Wu, M. Si, B. Zhang, K. Zhang, H. Li, L. Mi, Y. Jiang, Y. Rong, J. Chen, and Y. Fang, "Strong damping of the localized surface plasmon resonance of Ag nanoparticles by Ag2O," Nanotechnology, vol. 29, no. 29, p. 295702, 2018.
校內:2027-09-10公開