| 研究生: |
林意軒 Lin, Yi-Hsuan |
|---|---|
| 論文名稱: |
自由車功率量測系統開發與路騎實驗數據分析 Development of Cycling Power Meter and Road Test Data Analysis |
| 指導教授: |
苗君易
Miau, Jiun-Jih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 自由車 、風洞實驗 、路騎實驗 、功率量測與計算 |
| 外文關鍵詞: | Bicycle, Wind Tunnel Experiment , Road Test, Power Measurement and Calculation |
| 相關次數: | 點閱:103 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自由車的發展可以追溯到19世紀末期,隨著科技的進步和創新,現代自由車包括公路賽車、山地賽車、場地賽車等多個領域,競賽的強度隨著時間的推移而改變,訓練方法和科學技術的進步也提高了選手的表現和比賽強度。
風洞實驗是研究自由車空氣動力學的重要方法之一。通過在風洞中模擬真實的騎行條件,研究人員可以測量選手和自由車系統的阻力係數(Coefficient of Drag, CD)以及阻力面積(Coefficient of Drag Area, CDA)。除了風洞實驗方法,還可以使用功率計算方法來估計選手和自由車系統的CDA。功率計用於測量騎行過程中產生的功率,通過測量選手的功率輸出、騎乘速度、風速等參數,使用數學模型計算出CDA。路騎實驗除了能直接在競賽場地進行實驗,更有便利性高、數據擷取方便等優勢。而為確保路騎實驗參數的取得及準確度,曲柄功率計及三孔風速計微流體感測實驗室自行開發的量測儀器。
因此本研究總共包含三次實驗,兩次路騎實驗實驗A、B與一次風洞實驗實驗C,風洞所設定之雷諾數範圍為2.5×105~11×105,對應選手於自由車競賽騎乘與衝刺之速度(32~90 km/hr),每次實驗當中都會量測風速、溫度與阻力;路騎實驗則透過車錶取得絕對速度、路面坡度;曲柄功率計與踏板功率計取得功率以及三孔風速計測得風速和風向角。
在路騎實驗A中發現功率與騎乘速度之存在著0至6秒不等的時間差,意即當選手在騎乘當中若有加速的動作,功率會先上升,接著人與車的整個系統速度才會跟著上升;另外,相對風速Urel的擾動主要來自於周圍風場,數值的高低則為騎乘速度主導。也因此可推斷當騎乘速度越快時Vhw向量占比下降,側風的影響將會降低,風向角的標準差下降,因此越接近風洞的實驗條件。 在路騎實驗B中發現自製的曲柄功率計數值皆較市售的踏板功率計高出3~20%不等,而作用於曲柄和踏板的力量相位差則為造成兩種功率計的數值差異的最大來源。在一圈的踩踏當中並不是等轉速運動,而是有波峰和波谷的存在,因此當兩種形式的功率計量測到的力矩存在相位差的話,即會造成量測數值的差異。而在兩次路騎實驗計算條件設置完全相同的情況下,兩件車衣的差異比較下則都是車衣 B 優於車衣A,且都是有大約10%的差異,結果一致。
在風洞實驗中車衣B於高寬比越小的選手身上能有越好的效果,因此男選手A2021年至2023年高寬比自1.52下降至1.41,使車衣B於他身上的效果變佳。與路騎實驗的驗證可以發現在計算條件完全相同的情況下,踏板功率計所得出的 CDA 數值都較低,源自於功率值本身就低於曲柄功率計;曲柄功率計所得出的 CDA 則較接近風洞量測值;另外,可以透過功率計算方式看出不同車衣於同一位選手的差異,而使用不同形式的功率計雖然計算出的 CDA 數值不同,但會有大致相同的優劣趨勢。
Wind tunnel testing is an important method for studying the aerodynamics of cycling. By simulating real riding conditions in a wind tunnel, researchers can measure the coefficient of drag (CD) and the coefficient of drag area (CDA). In addition to wind tunnel experiments, the power calculation method can also be used to estimate the CDA of the cyclist. By measuring parameters such as the cyclist's power output, riding speed, and wind speed, researchers can calculate the CDA using mathematical models. Road testing experiments have advantages such as high convenience and easy data collection. The results show that with riding speed increasing, the Vhw vector decreases, the influence of crosswind decreases, resulting in experimental conditions closer to those of the wind tunnel. The CDA values obtained from the crank power meter were closer to the values measured in the wind tunnel. Furthermore, by using the power calculation method, the differences between different jerseys for the same athlete can be observed.
Keywords: Bicycle, wind tunnel experiment, road Test, power measurement and calculation
[1] A. E. Jeukendrup and J. Martin, "Improving cycling performance: how should we spend our time and money," Sports medicine, vol. 31, pp. 559-569, 2001.
[2] Power2max. (2018) Cycling Power Meter Basics: Types & Location.
[3] M. Russ. (2022) Pedal vs Crank Based Cycling Power Meters.
[4] A. Balbinot, C. Milani, and J. d. S. B. Nascimento, "A new crank arm-based load cell for the 3D analysis of the force applied by a cyclist," Sensors, vol. 14, no. 12, pp. 22921-22939, 2014.
[5] R. Mcainsh, "The Design and Engineering of an Accurate Bicycle Power Meter," 2014.
[6] R. Bini, P. Hume, J. L. Croft, and A. Kilding, "Pedal force effectiveness in Cycling: a review of constraints and training effects," 2013.
[7] V. Ferrer-Roca, V. Rivero-Palomo, A. Ogueta-Alday, J. A. Rodríguez-Marroyo, and J. García-López, "Acute effects of small changes in crank length on gross efficiency and pedalling technique during submaximal cycling," Journal of Sports Sciences, vol. 35, no. 14, pp. 1328-1335, 2017.
[8] R. R. Bini, P. A. Hume, and A. Cerviri, "A comparison of cycling SRM crank and strain gauge instrumented pedal measures of peak torque, crank angle at peak torque and power output," Procedia Engineering, vol. 13, pp. 56-61, 2011.
[9] M. Hoes, R. Binkhorst, A. Smeekes-Kuyl, and A. Vissers, "Measurement of forces exerted on pedal and crank during work on a bicycle ergometer at different loads," Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie, vol. 26, pp. 33-42, 1968.
[10] J. García-López, S. Díez-Leal, A. Ogueta-Alday, J. Larrazabal, and J. A. Rodríguez-Marroyo, "Differences in pedalling technique between road cyclists of different competitive levels," Journal of sports sciences, vol. 34, no. 17, pp. 1619-1626, 2016.
[11] T. S. David Gordon Wilson, Bicycling Science, fourth edition. 2020.
[12] J. C. Martin, D. L. Milliken, J. E. Cobb, K. L. McFadden, and A. R. Coggan, "Validation of a mathematical model for road cycling power," Journal of applied biomechanics, vol. 14, no. 3, pp. 276-291, 1998.
[13] O. Isvan, "Wind speed, wind yaw and the aerodynamic drag acting on a bicycle and rider," Journal of Science and Cycling, vol. 4, no. 1, pp. 42-50, 2015.
[14] M. Zdravkovich, M. Ashcroft, S. Chishohn, and N. Hicks, "Effect of cyclist’s posture and vicinity of another cyclist on aerodynamic drag," in The engineering of sport: CRC Press, 2020, pp. 21-28.
[15] L. Spurkland, L. M. Bardal, L. Sætran, and L. Oggiano, "Low aerodynamic drag suit for cycling-design and testing," in International Congress on Sport Sciences Research and Technology Support, 2015, vol. 2: SCITEPRESS, pp. 89-96.
[16] L. Brownlie et al., "Streamlining the time trial apparel of cyclists: the Nike Swift Spin project," Sports technology, vol. 2, no. 1-2, pp. 53-60, 2009.
[17] M. Bocciolone, F. Cheli, R. Corradi, S. Muggiasca, and G. Tomasini, "Crosswind action on rail vehicles: Wind tunnel experimental analyses," Journal of wind engineering and industrial aerodynamics, vol. 96, no. 5, pp. 584-610, 2008.
[18] N. Barry, D. Burton, T. Crouch, J. Sheridan, and R. Luescher, "Effect of crosswinds and wheel selection on the aerodynamic behavior of a cyclist," Procedia Engineering, vol. 34, pp. 20-25, 2012.
[19] D. M. Fintelman, M. Sterling, H. Hemida, and F. X. Li, "The Effect of Crosswinds on Cyclists: An Experimental Study," Procedia Engineering, vol. 72, pp. 720-725, 2014/01/01/ 2014.
[20] 陳嘉君, "自由車選手風洞實驗數據分析與減阻之研究," 國立成功大學航空太空工程研究所碩士論文, 2020.
[21] 袁薇茜, "不同體態與姿勢的自由車選手風洞實驗數據分析," 國立成功大學航空太空工程研究所碩士論文, 2021.
[22] 吳敏正. (2017) Propel在風洞實驗室怎麼吹? 單車誌.
[23] T. Asai, S. Hong, and K. Ijuin, "Flow visualisation of downhill skiers using the lattice Boltzmann method," European journal of physics, vol. 38, no. 2, p. 024002, 2016.
[24] V. Hurtado, S. Arango, L. Muñoz, and O. López, "Design of an onboard directional anemometer for bicycles," in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2020, vol. 83938: American Society of Mechanical Engineers, p. V004T04A016.
[25] 陳昱翔, "基於三孔皮托管之風速量測方法及其裝置(申請中)," 2023.
[26] 高義明, "內政部建研所環境風洞校驗及二維鈍形體空氣動力流場實驗研究," 國立成功大學航空太空工程研究所碩士論文, 2005.
[27] J.-J. J. MIAU, SHAU-SHIUN;JENG, SYH-TSANG;HU, CHIH-CHUNG; and H. WONG, "自行車之運動功率及阻力係數測量方法," Patent Appl. I586574, 2017.
[28] S. Gribble, "Cycling power and speed," in The computational cyclist, ed.
[29] F. Grappe, R. Candau, B. Barbier, M. Hoffman, A. Belli, and J.-D. Rouillon, "Influence of tyre pressure and vertical load on coefficient of rolling resistance and simulated cycling performance," Ergonomics, vol. 42, no. 10, pp. 1361-1371, 1999.
[30] C. White, "Mechanical Resistance on Bikes: Drivetrain Efficiency & Hub Bearings," ed, 2016.
[31] C. Norberg, "An experimental investigation of the flow around a circular cylinder: influence of aspect ratio," Journal of Fluid Mechanics, vol. 258, pp. 287-316, 1994.
[32] R. Pattenden, S. Turnock, and X. Zhang, "Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane," Experiments in Fluids, vol. 39, pp. 10-21, 2005.
[33] D. Sumner, J. Heseltine, and O. Dansereau, "Wake structure of a finite circular cylinder of small aspect ratio," Experiments in Fluids, vol. 37, pp. 720-730, 2004.
[34] J. Farney and E. D. Fleharty, "Aspect ratio, loading, wing span, and membrane areas of bats," Journal of Mammalogy, vol. 50, no. 2, pp. 362-367, 1969.
[35] G. E. Torres and T. J. Mueller, "Low aspect ratio aerodynamics at low Reynolds numbers," AIAA journal, vol. 42, no. 5, pp. 865-873, 2004.
[36] O. Isvan, "The effect of winds on a bicyclist's speed," Bike Tech, vol. 3, no. 3, pp. 1-6, 1984.
[37] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity analysis in practice: a guide to assessing scientific models. Wiley Online Library, 2004.
[38] A. Saltelli, S. Tarantola, and F. Campolongo, "Sensitivity analysis as an ingredient of modeling," Statistical science, pp. 377-395, 2000.
[39] K. Pearson, "Notes on the history of correlation," Biometrika, vol. 13, no. 1, pp. 25-45, 1920.
[40] I. B. o. Weights and Measures, Guide to the Expression of Uncertainty in Measurement. DIANE Publishing, 1993.
[41] 陳昱翔, "自由車手周遭流場結構探討與風洞實驗數據分析," 國立成功大學航空太空工程研究所碩士論文, 2022.
[42] T. N. Crouch, D. Burton, Z. A. LaBry, and K. B. Blair, "Riding against the wind: a review of competition cycling aerodynamics," Sports Engineering, vol. 20, pp. 81-110, 2017.