| 研究生: |
張凱庭 Zhang, Kai-Ting |
|---|---|
| 論文名稱: |
非線性凝膠參數量測方法 The Parameter Characterization of Nonlinear Gels |
| 指導教授: |
林育芸
Lin, Yu-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 凝膠 、非線性 、大變形 、壓痕試驗 、擴散係數 |
| 外文關鍵詞: | Gel, Nonliner, Large deformation, Indentation, Diffusion |
| 相關次數: | 點閱:64 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凝膠由許多長鏈分子相互連結成彈性網絡,及存在於網絡孔隙間的大量溶劑分子所構成。溶劑的吸入或排出於孔隙使得彈性網絡產生潤脹或收縮,此現象使得凝膠承受相當大的變形且反應為可逆的。在現今凝膠物理性質的實驗研究中,分析通常以線性孔彈理論為基礎,鮮少有以非線性凝膠理論分析實驗數據之研究。因此,本文以非線性凝膠理論為基礎,提出適用於非線性範疇之方法以量測凝膠參數,並將非線性理論植入有限元素法套裝軟體ABAQUS中,以建立非線性凝膠數值模型,採取以數值方法模擬凝膠於實驗下之情形來驗證本文方法之可行性。本文也針對適用性較高的圓球壓痕實驗,建立非線性凝膠層的瞬態行為預測公式,並探討厚度比的影響,藉以提供實驗分析做依據。
Gels consist of a three-dimensional elastic network which is formed by cross-linked long-chained polymers, and a large quantity of small solvent molecules existing in pores of network. The migration of solvent into or out of pores causes the network to swell or shrink. This makes the deformation of gels considerably large and the response is reversible. In the experimental research of physical properties of gels, the analyses are usually based on linear theory of poroelasticity, and very few data were analyzed by the nonlinear theory of gels. In this thesis, we developed the methods for characterizing the properties of gels from experimental data in large deformation regime, based on the nonlinear theory of gels. We also implemented the nonlinear theory into the finite-element code ABAQUS, and built the numerical model of nonlinear gels. Some numerical experiments were carried out to verify our characterization methods. We also establish the prediction of the short time behavior of a nonlinear gel layer indented by a spherical probe. The effects of layer thickness were discussed and provided for the analysis of spherical indentation test.
1. Li, J., Hu, Y., Vlassak, J.J., Suo, Z., Experimental determination of equations of state for ideal elastomeric gels. Soft Matter, 8(31), 8121-8128, 2012.
2. Hong, W., Zhao, X., Zhou, J., Suo, Z., A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 56(5), 1779-1793, 2008.
3. Urayama, K., Takigawa, T., Volume of polymer gels coupled to deformation. Soft Matter, 8(31), 8017-8029, 2012.
4. Duncan, R., The dawning era of polymer therapeutics. Nature Reviews Drug Discovery, 2(5), 347-360, 2003.
5. Jagur-Grodzinski, J., Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polymers for Advanced Technologies, 17(6), 395-418, 2006.
6. Dong, L., Agarwal, A.K., Beebe, D.J., Jiang, H.R., Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature, 442(7102), 551-554, 2006.
7. Wong, W.H., Guo, T.F., Zhang, Y.W, Cheng, L., Humidity-driven bifurcation in a hydrogel-actuated nanostructure: A three-dimensional computational analysis. International Journal of Solids and Structures, 47(16), 2034-2042, 2010.
8. Liu, Z., Hong, W., Suo, Z., Swaddiwudhipong, S., Zhang, Y., Modeling and simulation of buckling of polymeric membrane thin film gel. Computational Materials Science, 49(1, Supplement), S60-S64, 2010.
9. Tanaka, T., Hocker, L.O., Benedek, G.B., Spectrum of light scattered from a viscoelastic gel. The Journal of Chemical Physics, 59(9), 5151-5159, 1973.
10. Scherer, G.W., Drying gels: VI. Viscoelastic plate. Journal of Non-Crystalline Solids, 99(2–3), 324-358, 1988.
11. Scherer, G.W., Mechanics of syneresis I. Theory. Journal of Non-Crystalline Solids, 108(1), 18-27, 1989.
12. Scherer, G.W., Drying gels: VIII. Revision and review. Journal of Non-Crystalline Solids, 109(2–3), 171-182, 1989.
13. Scherer, G.W., Crack-tip stress in gels. Journal of Non-Crystalline Solids, 144(0), 210-216, 1992.
14. Scherer, G.W., Bending of gel beams: method for characterizing elastic properties and permeability. Journal of Non-Crystalline Solids, 142(0), 18-35, 1992.
15. Biot, M.A., General Theory of Three-Dimensional Consolidation. Journal of Applied Physics, 12(2), 155-164, 1941.
16. Hui, C.Y., Muralidharan, V., Gel mechanics: A comparison of the theories of Biot and Tanaka, Hocker, and Benedek. The Journal of Chemical Physics, 123(15), 154905, 2005.
17. Akira, O., Theory of pattern formation in gels: Surface folding in highly compressible elastic bodies. Physical Review A, 39(11), 5932-5948, 1989.
18. Urayama, K., Takigawa, T., Masuda, T., Stress relaxation and creep of polymer gels in solvent under uniaxial and biaxial deformations. Rheologica Acta, 33(2), 89-98, 1994.
19. ABAQUS 6.11 User’s manual.
20. Bouklas, N., Huang, R., Swelling kinetics of polymer gels: comparison of linear and nonlinear theories. Soft Matter, 8(31), 8194-8203, 2012.
21. Cai, S., Suo, Z., Equations of state for ideal elastomeric gels. EPL (Europhysics Letters), 97(3), 34009, 2012.
22. Konda, A., Urayama, K., Takigawa, T., Strain-Rate-Dependent Poisson’s Ratio and Stress of Polymer Gels in Solvents Revealed by Ultraslow Stretching. Macromolecules, 44(8), 3000-3006, 2011.
23. Lin, Y.Y., Hu, B.W., Load relaxation of a flat rigid circular indenter on a gel half space. Journal of Non-Crystalline Solids, 352(38–39), 4034-4040, 2006.
24. Hu, Y., Zhao, X., Vlassak, J.J., Suo, Z., Using indentation to characterize the poroelasticity of gels. Applied Physics Letters, 96(12), 121904, 2010.
25. Hu, Y., Chan, E.P., Vlassak, J.J., Suo, Z., Poroelastic relaxation indentation of thin layers of gels. Journal of Applied Physics, 110(8), 086103, 2011.
26. Hong, W., Liu, Z., Suo, Z., Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. International Journal of Solids and Structures, 46(17), 3282-3289, 2009.
27. Zhang, J., Zhao, X., Suo, Z., Jiang, H., A finite element method for transient analysis of concurrent large deformation and mass transport in gels. Journal of Applied Physics, 105(9), 093522, 2009.
28. Kang, M.K., Huang, R., A Variational Approach and Finite Element Implementation for Swelling of Polymeric Hydrogels Under Geometric Constraints. Journal of Applied Mechanics, 77(6), 061004-061004, 2010.
29. Flory, P.J., Rehner, J., Statistical mechanics of cross-linked polymer networks II. Swelling. The Journal of Chemical Physics, 11(11), 521-526, 1943.
30. Feynman, R.P., Leighton, R.B., Sands, M., The Feynman Lectures on Physics. I-43-9, 1942.
31. Hertz, H., On the contact of rigid elastic solids. J.reine und angewandte Mathematik, 92, 156-171, 1882.
32. Usmani, S.A., Beatty, M.F., On the surface instability of a highly elastic half-space. Journal of Elasticity, 4(4), 249-263, 1974.
33. 李威德,邊界條件及超彈性層厚度對黏著接觸問題之影響,國立成功大學土木工程學系,碩士論文,2007。