簡易檢索 / 詳目顯示

研究生: 黃世宏
Huang, Shih-Hung
論文名稱: 氧化鐵磁性奈米粒子在酵素固定化及分離上之應用研究
Applications of iron oxide magnetic nanoparticles in enzyme immobilization and separation
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 101
中文關鍵詞: 脂肪分解酵素吸附固定化磁性奈米粒子鳳梨酵素聚丙烯酸
外文關鍵詞: Adsorption, Bromelain, Polyacrylic acid, Magnetic, immobilization, Lipase, Nanoparticales
相關次數: 點閱:69下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係有關於氧化鐵磁性奈米粒子在酵素固定化及分離上之應用研究。前者主要將脂肪酶(Lipase)固定化在四氧化三鐵(Fe3O4)磁性奈米粒子上,探討製備變因、產品特性、及其在水相系統中之操作性能。後者主要將聚丙烯酸(PAA)共價鍵結在Fe3O4磁性奈米粒子上,作為一種新型磁性奈米吸附劑,探討製備變因、產品特性、及其在鳳梨酵素吸附分離上的應用。
    關於Lipase固定化在Fe3O4磁性奈米粒子上之研究,首先以化學共沉法製備出Fe3O4磁性奈米粒子,然後將Lipase利用carbodiimide活化的方式直接固定化在磁性奈米粒子上,並再探討其操作在水相系統中的操作性能。由穿透式電子顯微鏡(TEM)、X射線繞射儀(XRD)和超導量干涉磁量儀(SQUID磁量儀)分析得知,磁性奈米粒子在Lipase固定化後,其大小、結構和超順磁性並無明顯改變。傅立葉轉換紅外線光譜儀(FTIR)分析可確認Lipase確實已固定化在磁性奈米粒子上,並推測其一可能的反應機構。固定化Lipase的殘餘活性為游離態酵素的1.41倍且其貯存穩定性為游離態酵素的31倍。在pH值方面,固定化Lipase較游離態酵素具有較高的容忍度,而在相關的動力行為在本研究中皆有探討。
    關於磁性奈米吸附劑之製備與應用,首先以化學共沉法製備出Fe3O4磁性奈米粒子,然後將PAA藉carbodiimide活化直接共價鍵結在磁性奈米粒子上,形成具有離子交換功能之磁性奈米載體,並再探討其在水相鳳梨酵素吸附分離上的應用。由TEM、XRD和SQUID磁量儀分析得知,磁性奈米粒子在共價鍵結PAA後,其大小、結構和超順磁性並無明顯改變。由FTIR、熱重分析儀(TGA)、熱差分析儀(DTA)和化學分析電子光譜儀(XPS)分析可確認PAA已共價鍵結在磁性奈米粒子上。本研究所得的磁性奈米吸附劑,其離子交換容量為1.64 meq/g,遠較一般商業化的吸附劑為高。而磁性奈米吸附劑在pH 3~5、磷酸鹽濃度為0.1M、鳳梨酵素濃度為6 mg/ml時,在1分鐘內能將鳳梨酵素完全吸附。並且在pH 7時當KCl濃度超過0.6 M就能將鳳梨酵素完全脫附。至於水相鳳梨酵素在磁性奈米吸附劑上的吸附,可以Langmuir恆溫吸附模式描述,而其最大吸附量(qm) Langmuir吸附常數分別為0.476 mg/mg 和58.4 ml/mg。另外鳳梨酵素經過吸附/脫附程序後,其殘餘活性仍達87.4 %。

    This thesis concerns the applications of iron oxide magnetic nanoparticles in enzyme immobilization and separation. In the former, Lipase was immobilized on Fe3O4 magnetic nanoparticles. The preparation conditions, product properties, and the performances in the water systems were investigated. In the latter, polyacrylic acid (PAA) was covalently bound onto Fe3O4 magnetic nanoparticles to be a novel nano-adsorbent. The preparation conditions, product properties, and the application in the adsorption of Bromelain in aqueous solution were investigated.
    Lipase was covalently bound onto Fe3O4 magnetic nanoparticles (12.7 nm) via carbodiimide activation. The Fe3O4 magnetic nanoparticles were prepared by co-precipitating Fe2+ and Fe3+ ions in an ammonia solution and treating under hydrothermal conditions. The analyses of transmission electron microscopy (TEM) and X-ray diffraction (XRD) showed that the size and structure of magnetic nanoparticles had no significant changes after enzyme binding. Magnetic measurement revealed the resultant lipase-bound magnetic nanoparticles were superparamagnetic with a saturation magnetization of 61 emu/g (only slightly lower than that of the naked ones (64 emu/g)), a remanent magnetization of 1.0 emu/g, and a coercivity of 7.5 Oe. The analysis of Fourier transform infrared (FTIR) spectroscopy confirmed the binding of lipase onto magnetic nanoparticles. Compared to the free enzyme, the bound lipase exhibited a 1.41-fold enhanced activity, a 31-fold improved stability, and better tolerance to the variation of solution pH . The kinetic behavior of bound Lipase was also determined in aqueous solution.
    A novel magnetic nano-adsorbent was prepared by covalently binding polyacrylic acid (PAA) on Fe3O4 magnetic nanoparticles (13.2 nm) via carbodiimide activation. From the analyses of TEM, XRD and magnetism, the magnetic nanoparticles showed no change in size, structure and superparamagnetic characteristics after binding PAA. The analyses of FTIR, thermogravimetric analysis (TGA), differential thermal analysis (DTA) and X-ray photoelectron spectroscopy (XPS) confirmed the binding of PAA to magnetic nanoparticles and suggested the binding mechanism of PAA. The ionic exchange capacity of the resultant magnetic nano-adsorbents was estimated to be 1.64 meq/g, much higher than those of the commercial ionic exchange resins. The full recovery of bromelain was achievable within 1 min onto the nano-adsorbents at pH 3-5 and 0.1 M phosphate when the concentration of bromelain was 6 mg/ml. Moreover, the complete desorption of bromelain from the nano-adsorbents was attained within 1 minute at pH 7 when the concentration of KCl was above 0.6 M. The isothermal adsorption indicated that the adsorption behavior of bromelain followed the Langmuir adsorption isothermal and the values of the maximum amount of adsorbed bromelain (qm) and Langmuir constant (K) were 0.476 mg/mg and 58.4 ml/mg, respectively. In addition, bromelain retained 87.4% activity after adsorption/desorption.

    中文摘要.................................I 英文摘要...............................III 誌謝.....................................V 總目錄..................................VI 表目錄...................................X 圖目錄..................................XI 符號說明................................XV 第一章 緒論 1.1 奈米材料與奈米技術..................1 1.1.1 奈米材料與奈米技術的簡介...........1 1.1.2 奈米材料的特性.....................2 1.1.3 複合奈米粒子.......................6 1.1.4 奈米材料的應用領域.................7 1.2 磁性載體技術的簡介與應用.............9 1.3 生物觸媒與生化分離的簡介............11 1.3.1 酵素-生物觸媒...................11 1.3.2 生化分離........................11 1.3.3 酵素固定化的技術與優點..........12 1.3.4 酵素固定化方式..................13 第二章 磁性奈米粒子在酵素固定化上 的應用 2.1 研究動機............................16 2.2 理論部分............................18 2.2.1 磁性理論........................18 2.2.2 酵素動力學......................23 2.3 實驗部分............................25 2.3.1 藥品、材料與儀器................25 2.3.2 磁性奈米粒子的製備..............28 2.3.3 Lipase在磁性奈米粒子上的固定化..28 2.3.4 特性分析........................29 2.3.5 Lipase 固定化效率的分析.........30 2.3.6 pNP 於水相系統中濃度校 正曲線的測定....................30 2.3.7 Lipase 於水相系統中活性的測定...32 2.3.8 Lipase 於水相系統中 熱穩定性的測定..................33 2.3.9 Lipase 於水相系統中 貯存穩定性的測定................34 2.3.10 Lipase 於水相系統中動力學參數 的測定..........................34 2.4 結果與討論..........................35 2.4.1 固定化效率......................35 2.4.2 粒子大小與結構..................35 2.4.3 磁性............................40 2.4.4 固定化機構......................42 2.4.5 固定化Lipase在水相系統中的 pH值效應........................45 2.4.6 固定化Lipase在水相系統中的 溫度效應........................47 2.4.7 固定化Lipase在水相系統中的 貯存穩定性......................47 2.4.8 固定化Lipase在水相系統中的 熱穩定性........................50 2.4.9 固定化Lipase於水相系統中的 動力學參數......................50 第三章 磁性奈米吸附劑在酵素分離上 的應用 3.1 研究動機............................54 3.2 理論部分............................55 3.2.1 吸附理論..........................55 3.3 實驗部分............................64 3.3.1 藥品、材料與儀器................64 3.3.2 磁性奈米粒子的製備..............64 3.3.3 PAA固定在磁性奈米粒子上........66 3.3.4 特性分析........................66 3.3.5 磁性奈米吸附劑離子 交換容量的測定..................68 3.3.6 磁性奈米吸附劑對於鳳梨酵素的 吸附和脫附測定..................68 3.3.7 鳳梨酵素的活性測定..............69 3.4 結果與討論..........................70 3.4.1 PAA在磁性奈米粒子上的固定化....70 3.4.2 固定化機構......................74 3.4.3 粒子大小與結構..................79 3.4.4 磁性............................82 3.4.5 磁性奈米吸附劑的離子交換容量....85 3.4.6 鳳梨酵素的吸附和脫附............85 3.4.7 磁性奈米吸附劑對於鳳梨酵素的 平衡等溫吸附模式................89 3.4.8 溫度對於磁性奈米吸附劑吸附 鳳梨酵素的影響..................89 第四章 結論與展望 4.1 結論................................92 4.2 未來展望............................95 參考文獻................................96 自述...................................101

    1. 科技發展政策報導 SR9109 (2002) 667-673。
    2. 科技發展政策報導 SR9109 (2002) 643-647。
    3. 科學發展 (2002年6月) 354期48-51。
    4. 張立德 (2000) 納米材料,北京:化學工業。
    5. 張立德,牟季美 (2000) 納米材料和納米結構,北
    京:科學。
    6. 張志焜,崔作林 (2000) 納米技術與納米材料,北
    京:國防工業。
    7. 廖敏宏 (2002) 磁性奈米載體在生物觸媒和生化分離
    之應用,國立成功大學化學工程研究所博士論文。
    8. 吳明立 (2001) 微乳化系統製備雙金屬奈米粒子之研
    究,國立成功大學化學工程研究所博士論文。
    9. 莊萬發 (1998) 超微粒子理論應用,臺南:復漢。
    10. 史宗淮 (1995) 微粉製程技術簡介,化工 42: 28-
    35。
    11. Pieters, B. R.; Williams, R. A.; Webb, C.
    (1992) Magnetic carrier technology. In:
    Williams, R. A., ed. Colloid and Surface
    Engineering: Applications in the Process
    Industries. Oxford: Butterworth-Heinemann,
    pp. 248-286.

    12. Xu, Z.; Liu, Q.; Finch, J. A. (1999)
    Engineering of nanosize superparamagnetic
    particles for use in magnetic carrier
    technology. In: Schwarz J A, Contescu C I,
    eds. Surfaces of Nanoparticles and Porous
    Materials. New York: Marcel Dekker, pp. 31-50.

    13. Abudiab, T.; Jr, R. R. B. (1998) Preparation
    of magnetic immobilized metal affinity
    separation media and its use in the isolation
    of proteins. J. Chromatogr. A 795: 211-217

    14 Bolto, B. A. (1982) Novel water treatment
    processes which involve polymers. In: Cooper A
    R, ed. Polymeric Separation Media. New York:
    Plenum Press, pp. 211-225.

    15. Akgöl, S.; Kaçar, Y.; Denizli, A.; Arica, M.
    Y. (2001) Hydrolysis of sucrose by invertase
    immobilized onto novel magnetic
    polyvinylalcohol microspheres. Food Chem.
    74: 281-288.

    16. Ghassabian, S.; Ehtezazi, T.; Forutan, S. M.;
    Mortazavi, S. A. (1996) Dexamethasone-loaded
    magnetic albumin microspheres: Preparation
    and in vitro release. Int. J. Pharm. 130:
    49-55.

    17. Häfeli, U.; Schütt, W.; Teller, J.; Zborowski,
    M. (1997) Scientific and Clinical Applications
    of Magnetic Carriers. New York: Plenum Press.

    18. Josephson, L.; Perez, J. M.; Weissleder, R.
    (2001) Magnetic nanosensors for the detection
    of oligonucleotide sequences. Angew. Chem.
    Int. Ed. 40: 3204-3206.

    19. 王群超(2001) 固定Pseudomonas fluorescens 脂肪
    酵素於幾丁聚糖之研究,國立清華大學化學工程研究
    所碩士論文。
    20. 田蔚城主編 生物技術的發展應用,九州圖書。
    21. 陳東煌 (1992) 固定化尿素酶膜反應分離器去除水溶
    液中尿素之動力學研究,國立成功大學化學工程研究
    所博士論文。

    22. Koneracká, M.; Kopčanský, P.; Antalík, M.;
    Timko, M.; Ramchand, C. N.; Lobo, D.; Mehta,
    R. V.; Upadhyay, R. V. Immobilization of
    proteins and enzymes to fine magnetic
    particles. J. Magn. Magn. Mater. 1999, 201,
    427-430.

    22. Schmid, R. D.; Verger, R. Lipases: interfacial
    enzymes with attractive applications. Angew.
    Chem. Int. Ed. 1998, 37, 1608-1633.

    24. Villeneuve, P.; Muderhwa, J. M.; Graille, J.;
    Haas, M. J. Customizing lipases for
    biocatalysis: a survey of chemical, physical
    and molecular biological approaches. J. Mol.
    Catal. B. Enzymatic 2000, 9, 113-148.

    25. Sharma, R.; Chisti, Y.; Banerjee, U. C.
    Production, purification, characterization,
    and applications of lipase. Biotechnol. adv.
    2001, 19, 627-662.

    26. Balcão, V. M.; Paiva, A. L.; Malcata, F. X.
    Bioreactors with immobilized lipases: state
    of the art. Enzyme Microb. Technol. 1996, 18,
    392-416.

    27. Moreno, J. M.; Sinisterra, J. V.Immobilization
    of lipase from Candida cylindracea on
    inorganic supports. J. Mol. Catal. 1994, 93,
    357-369.

    28. Pencreac'h, G.; Leullier, M.; Baratti, J. C.
    Properties of free and immobilized lipase from
    Pseudomonas cepacia. Biotechnol. Bioeng.
    1997, 56, 181-189.

    29. Tamaura, Y.; Takahashi, K.; Kodera, Y.; Saito,
    Y.; Inada, Y. Chemical modification of lipase
    with ferromagnetic modifier. Biotechnol. Lett.
    1986, 8, 877-880.

    30. Mihama, T.; Yoshimoto, T.; Ohwada, K.;
    Takahashi, K.; Akimoto, S.; Saito,Y.; Inada,
    Y. Magnetic lipase adsorbed to a magnetic
    fluid. J. Biotechnol. 1988, 7, 141-146.

    31. Kuncová, G.; Šivel, M. Lipase immobilized in
    organic-inorganic matrices. J. Sol-gel Sci.
    Technol. 1997, 8, 667-671.

    32. Halling, P. J.; Dunnill, P. (1980) Magnetic
    supports for immobilized enzymes and
    bioaffinity adsorbents. Enzyme Microb.Technol.
    2: 2-10.

    33. 張煦,李學養 (1982) 磁性物理學,臺北:聯經。

    34. 蘇品書 (1998) 超微粒子材料技術,臺南:復漢。

    35. 中華民國磁性技術協會,第十八期,(1998) P57。

    36. Kondo, A.; Fukuda, H. (1997) Preparation of
    thermo-sensitive magnetic hydrogel
    microspheres and application to enzyme
    immobilization. J. Ferment. Bioeng. 84:
    337-341.

    37. Zaitsev, V. S.; Filimonov, D. S.; Presnyakov,
    I. A.; Gambino, R. J.; Chu, B. Physical and
    chemical properties of magnetite and
    magnetite-polymer nanoparticles and their
    colloidal dispersions. J. Colloid Interface
    Sci.1999, 212, 49-57.

    38. Dabrowski A, Bülow M, Podkościelny P. In:
    Adsorption and Nano-structures (I. Dekany ed),
    Springer-Verlag, Berlin Heidelberg, 2002, p.70.

    39. Maurer,H.R(2001)Bromelain:biochemistry,
    pharmacologyand medical useCMLS, Cell. Mol.
    Life Sci. 58: 1234-1245

    40. Khmelnitsky, Y. L.; Levashov, A. V.; Klyachko,
    N. L.; Martinek, K. (1988) Engineering
    biocatalytic systems in organic media with low
    water-content. Enzyme Microb. Technol. 10:
    710-724.

    41. Harris, E. L. V.; Angal, S. (1989) Protein
    Purification Methods:A Practical Approach.
    New York: IRL Press.

    42. Scopes, R. K. (1987) Protein Purification:
    Principles and Practice. New York:
    Springer-Verlag.

    43. Liao M. H, Chen D. H. (2002) Preparation and
    Characterization of a Novel Magnetic
    Nano-adsorbent, J. Mater. Chem.12: 3654.

    44. Heinrikson R. L, Kézdy F. J. In: Methods in
    Enzymology (S. P.Colowick and N. O. Kaplan
    ed.), Vol. XLV, Part B: Proteolytic Enzymes
    (L. Lorand ed.), Academic Press, NY, 1976, p.
    740.

    45. Jiang, L.; Glidle, A.; Griffith, A.; McNeil,
    C. J.; Copper, J. M. (1997) Characterising the
    formation of a bioelectrochemical interface at
    a self-assembled monolayer using X-ray
    photoelectron spectroscopy. Bioelectrochem.
    Bioenerg. 42: 15-23.

    46. Murray, R. W. (1980) Chemically modified
    electrodes. Acc. Chem. Res. 13: 135-141.

    47. Murachi T. In: Methods in Enzymology (S. P.
    Colowick and N. O. Kaplan ed.), Vol. XLV, Part
    B: Proteolytic Enzymes (L. Lorand ed.), ,
    Academic Press, NY., 1976, p. 475.

    下載圖示 校內:2005-07-14公開
    校外:2005-07-14公開
    QR CODE