簡易檢索 / 詳目顯示

研究生: 王建文
Wang, Jian-Wen
論文名稱: 糖反應幾丁聚醣/聚乙二醇生醫可降解性高分子之製備與生物評估
Preparation and Biological Evaluation of Sugar-Mediated Chitosan/PEG Based Biodegradable Polymer
指導教授: 洪敏雄
Hon, Min - Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 163
中文關鍵詞: 幾丁聚醣β焦磷酸鈣鷹架材聚乙二醇梅納反應
外文關鍵詞: Scaffold, Chitosan, Maillard reaction, β-DCP, PEG
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要以親水性的聚乙二醇與幾丁聚醣混摻形成親水性的混摻膠體,並利用具有醛基或酮基的天然糖類與幾丁聚醣的胺基形成席弗鹼複合物以發展新穎的生醫可降解性高分子材料。本研究所製備的糖反應-幾丁聚醣/聚乙二醇混摻物分為薄膜型與鷹架型。實驗的第一部分先以聚乙二醇混摻幾丁聚醣,並以天然糖類與混摻膜進行梅納反應形成席弗鹼複合物。實驗中以控制混摻膠體的酸鹼值以及熱處理的方式製作糖反應混摻膜進行高分子物性、熱性質、生物降解性質與生物適應性的分析。實驗第二部分以生物可吸收性陶瓷β焦磷酸鈣混合糖反應混摻體分別製成複合膜與多孔鷹架材以強化高分子基質。實驗中β-焦磷酸鈣與糖反應混摻體以不同重量百分比混合製作成膜狀與多孔鷹架狀材料並進行密度測試、孔隙度測試、抗壓強度測試、持水性測試、生物適應性測試、生物降解性分析。
      本研究第一部份實驗結果顯示,在糖類與幾丁聚醣的胺基間產生imine bond 鍵結(C=N),而還原糖與混摻膜反應後會降低混摻膜親水性。糖反應混摻膜的平衡水含量依序為蔗糖>果糖>葡萄糖。糖反應混摻膜在含有溶菌脢的溶液中具有最好的降解行為。幾丁聚糖、混摻膜以及蔗糖反應混摻膜具有良好的細胞適應性,而果糖與葡萄糖反應混摻膜表面的化學性質與結構抑制了細胞生長。熱處理溫度的增加使糖反應混摻膜的反應度上升並使吸水性下降,同時也改善細胞貼附的行為。高酸鹼值及高濃度的葡萄糖溶液有助於梅納膠體的形成。
      本研究第二部份實驗結果顯示,複合膜浸泡七天後,其萃取液與纖維母細胞共同培養後細胞數目較控制組快速的增加;此乃因葡萄糖胺與鈣離子自複合膜中釋放所致。當β-DCP含量低於40 wt%時,複合膜之降解行為主要由混摻膠體的酵素分解行為來控制,而當β-DCP含量高於40 wt%時,降解速率主要由低降解速率的β-DCP顆粒與複合材料內物理內鎖結構所控制。此外,以預先冷凍再乾燥的製程可以製造出抗壓強度佳、具有小孔及孔壁連通的結構的多孔性複合鷹架材,且隨著β-DCP添加量的增加複合鷹架材的孔隙率降低而持水性及密度增加。

      Novel biodegradable chitosan/PEG membrane was prepared by maillard process between chitosan amino group and aldehyde or keto groups of native sugar. Membrane and scaffold type of sugar mediated chitosan/PEG gel have been developed in this research. In part I , by controlling the pH value of sugar, mediating process (surface and solution) and thermal treated temperature, the sugar mediated chitosan/PEG polyblend was prepared. In part II, by mixing bioresorbable b-dicalcium pyrophosphate (b-DCP) ceramic particles to glucose mediated chitosan-Polyethylene glycol (PEG) gel with different weight ratio, the mechanical property of sugar mediated membrane or scaffold was reinforced.
      The part I results show that the chemical reaction occurrs in imine bonds (C=N) between sugar and amino groups in chitosan. The equilibrium water content (EWC) value of the sugar mediated membrane is in the sequence of sucrose>D-fructose>glucose and they all present much lower water uptake ability than that of polyblend. All of the sugar-mediated membranes are susceptible to lysozyme. However, glucose and d-fructose mediated membranes have a low cell viability impling that their surface chemistry and structure inhibit the cell growth. The thermal treatment promoted the mediating degree and decreased the EWC value of the sugar mediated membrane. In addition, thermal treatment also changed the cell behavior of glucose and d-fructose mediated membrane. The maillard reaction between chitosan and glucose is favored in high pH condition and the glucose mediated membranes prepared by the solution mediated process have a lower EWC than the surface mediated ones.
      The part II results show that the growth of fibroblasts would increase for the extracts obtained from different b-DCP feeding weight composites after soaking for 7 days. It was found that the glucose amine and calcium are gradually released from the composites, which is considered to be nutritious for the growth of the fibroblast. When the b-DCP content is lower than 40wt%, the degradation behavior is mostly controlled by the dissolution of chitosan/PEG matrix, but as the b-DCP content is larger than 50wt%, the degradation behavior is dominated by the low degradation rate of b-DCP granules and physical interlocking structure of the composite. A well connective channel structure with small pores was obtained by scheme II process and the porosity decreases but water retention and density increase as β-DCP content increases.

    中文摘要------------------------------------------------------------------------I 英文摘要-----------------------------------------------------------------------Ⅲ 目錄----------------------------------------------------------------------------V 圖目錄-------------------------------------------------------------------------XI 表目錄-----------------------------------------------------------------------XVII 英中文對照表----------------------------------------------------------------XVIII 符號-------------------------------------------------------------------------XXII 第一章 緒論---------------------------------------------------------------------1 1-1 前言------------------------------------------------------------------------1 1-2 生醫可降解性高分子材料之需求------------------------------------------------2 1-3 研究目的--------------------------------------------------------------------3 第二章 文獻回顧-----------------------------------------------------------------6 2-1 幾丁質與幾丁聚醣------------------------------------------------------------6 2-1-1 幾丁質與幾丁聚醣之發展史--------------------------------------------------6 2-1-2 幾丁質與幾丁聚醣的特性----------------------------------------------------6 2-1-2-1 幾丁質------------------------------------------------------------------6 2-1-2-2 幾丁聚醣----------------------------------------------------------------8 2-1-3 影響幾丁聚醣水溶性之因子----------------------------------------------9 2-1-4 水溶性幾丁聚醣的製備-------------------------------------------------10 2-1-5 幾丁質與幾丁聚醣在生醫材料上之應用-----------------------------------12 2-2 聚乙二醇的性質-------------------------------------------------------------13 2-3 改善幾丁聚醣/聚乙二醇混摻物耐酸鹼的方法------------------------------------16 2-4 天然穩定物的選擇來源:單醣及雙醣--------------------------------------------18 2-5 薄膜結構之分類-------------------------------------------------------------20 2-6 薄膜製備方式---------------------------------------------------------------21 2-6-1 熱誘導式相轉換法---------------------------------------------------------21 2-6-2 乾式相轉換法-------------------------------------------------------------21 2-6-3 濕式相轉換法-------------------------------------------------------------21 2-6-4 乾/濕式混合製程----------------------------------------------------------22 2-7 細胞培養-------------------------------------------------------------------22 2-8 高分子強化基質的選擇-------------------------------------------------------24 2-9 梅納反應-------------------------------------------------------------------25 2-10 冷凍乾燥法成形理論--------------------------------------------------------28 第三章 糖類對幾丁聚醣/聚乙二醇混摻膜穩定性之影響-------------------------------33 3-1 實驗方法與步驟-------------------------------------------------------------33 3-1-1 實驗藥品-----------------------------------------------------------------33 3-1-2 糖反應幾丁聚醣/聚乙二醇混摻膜的製備法------------------------------------33 3-1-3 材料測試項目-----------------------------------------------------------33 3-1-3-1 膨潤度-------------------------------------------------------------33 3-1-3-2 熱重分析儀---------------------------------------------------------34 3-1-3-3 傅立葉轉換紅外線光譜儀---------------------------------------------34 3-1-4 糖反應混摻膜的酵素降解行為---------------------------------------------34 3-1-5 細胞相容性-------------------------------------------------------------35 3-2 結果與討論-----------------------------------------------------------------38 3-2-1 熱重分析----------------------------------------------------------------38 3-2-2 FTIR分析----------------------------------------------------------------41 3-2-3 膨潤行為分析------------------------------------------------------------41 3-2-4 酵素降解-----------------------------------------------------------------47 3-2-5 細胞相容性測試-----------------------------------------------------------52 3-3 小結-----------------------------------------------------------------------56 第四章 熱處理對糖反應混摻膜之影響----------------------------------------------57 4-1 實驗方法與步驟-------------------------------------------------------------57 4-1-1 實驗藥品-----------------------------------------------------------------57 4-1-2 糖反應幾丁聚醣/聚乙二醇混摻膜的製備法------------------------------------57 4-1-2-1 溶液直接反應法與熱處理---------------------------------------------57 4-1-3 材料特性分析-----------------------------------------------------------57 4-1-3-1 減弱全反射-傅立葉轉換紅外光譜儀------------------------------------57 4-1-3-2 X光繞射-----------------------------------------------------------58 4-1-3-3 薄膜去乙醯度-----------------------------------------------------------58 4-1-3-4 薄膜反應度-------------------------------------------------------------60 4-1-3-5 細胞附著型態觀察與細胞活性-----------------------------------------60 4-1-3-6 薄膜膨潤度與萃取液酸鹼變化-----------------------------------------60 4-1-3-7 SEM--------------------------------------------------------------------61 4-2 結果與討論-----------------------------------------------------------------61 4-2-1 熱分析與反應度-----------------------------------------------------------61 4-2-2 FTIR-------------------------------------------------------------------64 4-2-3 XRD--------------------------------------------------------------------64 4-2-4 膨潤度行為-------------------------------------------------------------67 4-2-5 SEM. ------------------------------------------------------------------69 4-2-6 細胞相容性-------------------------------------------------------------73 4-3 小結-----------------------------------------------------------------------79 第五章 酸鹼處理對糖反應混摻膜之影響--------------------------------------------80 5-1 實驗方法與步驟-------------------------------------------------------------80 5-1-1 實驗藥品---------------------------------------------------------------80 5-1-2 酸鹼處理修飾溶液直接反應法-----------------------------------------------80 5-1-3 酸鹼處理修飾表面反應法---------------------------------------------------80 5-1-4 材料分析項目-------------------------------------------------------------80 5-1-5 藥物包覆-----------------------------------------------------------------80 5-1-5-1 藥物損失與藥物含量-------------------------------------------------82 5-1-5-2 藥物溶離-----------------------------------------------------------82 5-2 結果與討論-----------------------------------------------------------------84 5-2-1以酸鹼處理修飾溶液直接反應法之薄膜---------------------------------------84 5-2-1-1 FTIR----------------------------------------------------------------84 5-2-1-2 XRD-----------------------------------------------------------------84 5-2-1-3 膨潤行為與反應度----------------------------------------------------88 5-2-1-4 SEM-----------------------------------------------------------------91 5-2-1-5 藥物釋放------------------------------------------------------------91 5-3 小結-----------------------------------------------------------------------99 第六章 添加β焦磷酸鈣對糖反應混摻膜的影響-------------------------------------100 6-1 實驗方法與步驟------------------------------------------------------------100 6-1-1 實驗藥品----------------------------------------------------------------100 6-1-2 β焦磷酸鈣混合糖反應混摻體複合膜的製備法--------------------------------100 6-1-3 β焦磷酸鈣混合糖反應幾丁聚醣/聚乙二醇複合膜萃取物的製備-----------------100 6-1-4 萃取液成分--------------------------------------------------------------101 6-1-5 細胞毒性----------------------------------------------------------------101 6-1-6 複合膜降解行為----------------------------------------------------------102 6-2 結果與討論----------------------------------------------------------------102 6-2-1葡萄糖胺與鈣離子釋放----------------------------------------------------102 6-2-2 微結構與XRD分析--------------------------------------------------------108 6-2-3 萃取液對NIH3T3纖維母細胞的細胞毒性影響---------------------------------111 6-2-4 複合膜的可能降解機制---------------------------------------------------114 6-3 小結----------------------------------------------------------------------118 第七章β-焦磷酸鈣混合糖反應混摻膠體複合多孔鷹架材之製備-----------------------120 7-1 實驗方法與步驟------------------------------------------------------------120 7-1-1 實驗藥品----------------------------------------------------------------120 7-1-2 糖反應混摻膠體及β-焦磷酸鈣混合糖反應混摻膠體複合多孔鷹架材的製備法-----120 7-1-3 材料分析項目------------------------------------------------------------122 7-1-4 多孔性鷹架材的持水性----------------------------------------------------122 7-1-5多孔性鷹架材的密度-------------------------------------------------------122 7-1-6 抗壓強度----------------------------------------------------------------123 7-2 結果與討論----------------------------------------------------------------123 7-2-1糖反應幾丁聚醣/聚乙二醇的微結構-----------------------------------------123 7-2-2糖反應幾丁聚醣/聚乙二醇的持水性-----------------------------------------129 7-2-3 蔗糖反應混摻複合鷹架材的微結構-----------------------------------------129 7-2-4 材料特性---------------------------------------------------------------132 7-2-5 機械強度分析-----------------------------------------------------------136 7-3小結-----------------------------------------------------------------------136 第八章 總結論-----------------------------------------------------------------140 第九章 未來展望---------------------------------------------------------------142 參考文獻----------------------------------------------------------------------144 誌謝--------------------------------------------------------------------------160 學經歷------------------------------------------------------------------------161 著作--------------------------------------------------------------------------162

    [1] Kopecek, J.; Ulbrich, K., “Biodegradation of biomedical polymers” Prog. Polym. Sci., 9, 1, p 1-58,1983
    [2] Williams, D. F., “Review of polymer biocompatibility” Bio. Eng. Soc, p 15-21, 1982
    [3] Ruardy, T. G.; Schakenraad, J. M.; Mei, H. C. and Busscher H. J.; “Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phrnomena” Surf. Sci. Rep. 29, p1-27,1999
    [4] Linda, A. Felton. and James, W. M.,” Adhesion of polymeric films to pharmaceutical solids” Eur. J. Pharm. Biopharm., 47, p3–14, 1999
    [5] 曾厚, “Chitin 與Chitosan 之應用與發展現況” 生物產業, 8, 2, p20-26, 1987
    [6] 吳豐智,曾如玲, “神奇的物質— 幾丁質和幾丁聚醣” 化工技術, 5, 7, 52, p196-201, 1997
    [7] 陳文彬, “幾丁聚醣/硫酸化軟骨素錯合物的製備與特性之研究” 高雄醫學大學化學研究所, 碩士論文, 2001
    [8] 郭建良, “低分子量幾丁聚醣對雙叉桿菌及其他細菌之影響” 國立台灣大學食品科技研究所, 碩士論文, 1995
    [9] 蔡漢蓉, “幾丁聚醣在水產養殖廢水處理之應用” 國立台灣大學食品科技研究所, 碩士論文, 1997
    [10] Struszczyk, M. H.,”Chitin and chitosan Part II. Applications of chitosan” Polymers, 47, 6, p 396-403, 2002
    [11] 余柏毅, “幾丁聚醣、膠原蛋白、明膠之具表面微構形膜材製備與其在組織工程上之應用” 私立元智大學化學工程學系研究所, 碩士論文,2003
    [12] Aiba, S. I. “Studies on chitosan: Lysozymic hydrolysis of partially N-acetylated chitosans” Int. J. Biol. Macromol., 14, p225-228, 1992
    [13] Varum, K. M.; Ottoy, M. H. and Smidsrod, O., “Water-solubility of partially N-acetylated chitosans as a function of pH: Effect of chemical composition and depolymerization” Carbohyd. Polym., 25, 2, p 65-70, 1994
    [14] Ikada, Y.,” In vitro and in vivo degradation of films of chitin and its deacetylated derivatives” Biomaterials, 18, 7, p 567-575, 1997
    [15] 袁國芳, ”幾丁與幾丁聚醣在食品工業上之應用”食品工業, 31, 10, p9-25, 1999
    [16] Kuroiwa, T.; Ichikawa, S.; Hiruta, O.; Sato, S. and Mukataka, S., “Factors affecting the composition of oligosaccharides produced in chitosan hydrolysis using immobilized chitosanases” Biotechnol. Progr., 18, 5, p 969-974, 2002
    [17] Terbojevich, M.; Cosani, A. and Muzzarelli, R. A. A. “Molecular parameters of chitosans depolymerized with the aid of papain” Carbohyd. Polym., 29, 1, p 63-68, 1996
    [18] Dunn, E. T.; Grandmaison, E. W. and Goosen, M. F. A.,” Applications and properties of chitosan” J. Bioact. Compat. Poly., 7, 4, p 370-397, 1992
    [19] 蔡政翰, ”以化學修飾法改進幾丁聚醣之溶解度”國立台灣大學食品科技研究所, 碩士論文, 1996
    [20] Malette W. G., “Method for the therapeutic occlusion”, US Patent, 4, 785, 1984
    [21] Amiji M. M., “Platelet adhesion and activation on an amphoteric chitosan derivative bearing sulfonate groups” Colloids. Surface. B., 10, 263, 1998
    [22] Amiji, M. M., ”Surface modification of chitosan hemodialysis membranes with anionic polysaccharides” Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the International Biomaterials Symposium, 1, p 879, 1996
    [23] Inui, H.; Tsujikubo, M. and Hirano, S., “Low molecular weight chitosan stimulation of mitogenic response to platelet-derived growth factor in vascular smooth muscle cells” Biosci. Biotechnol. Biochem., 59, 11, p2111-2114, 1995
    [24] Yannas, I. V.; Burke, J. F. and Warpehoski, M., “Prompt long-term functional replacement of skin” Trans. Am. Soc. Artif. Intern. Organs., 27, p1923, 1981
    [25] Zhu, A.; Zhang, M., Wu, Jun. and Shen, Jian., “Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface” Biomaterials, 23, p 4657–4665, 2002
    [26] Chen, X. G.; Wang, Z.; Liu, W. S. and Parka, H. J., “The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts” Biomaterials, 23, p 4609–4614, 2002
    [27] Genta, I.; Costantini, M.; Asti, A.; Conti, B. and Montanari, L.” Influence of glutaraldehyde on drug release and mucoadhesive properties of chitosan microspheres” Carbohyd. Polym., 36, 2-3, p 81-88, 1998
    [28] Senel, S.; Ikinci, G.; Kas, S.; Yousefi-Rad, A.; Sargon, M. F. and Hincal, A., “Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery” Int. J. Pharm. 193, p 197-203, 2000
    [29] Toshinori, S.; Tsuyoshi, I. and Yoshio, O., “In vitro gene delivery mediated by chitosan. Effect of pH, serum and molecular mass of chitosan on the transfection efficiency” Biomaterials, 22, p 2075-2080, 2001
    [30] Sugano, M.; Watanabe, S.; Kishi, A.; Izume, M. and Ohtakara, A., “Hypocholesterolemic action of chitosans with different viscosity in rat” Lipids, 23, p 187-192, 1988
    [31] Ikeda, Y., “Interrelated effects of dietary fiber and fat as lymphatic cholesterol and triglyceride absorption in rats” J. Nutr., 119, 10, p 1383-1387, 1989
    [32] Enomto, M.; Hashimoto, M.; Kuramae, T. and Kanno, M., “Low molecular weight chitosan as anticholesterolemic” Jpn. Kokai. Tokkyo. Koho. 117, p 104-168, 1992
    [33] Zacour, A. C.; Silva, M. E.; Cecon, P. R.; Bambirra, E. A. and Vieira, E. C., “Effect of dietary chitin on cholesterol absorption and metabolism in rats” J. Nutr. Sci. Vitaminol., 38, p 609-613, 1992
    [34] Eugene, K. and Lee, Y. L., “Implantable applications of chitin and chitosan” Biomaterials., 24, p 2339-2349, 2003
    [35] 蔡秉宏, “以聚殼醣合成光交聯性衍生物之探討” 國立成功大學化學工程研究所, 碩士論文, 1999
    [36] Dumitriu, S., “Medical application of synthetic polymers” Marcel Dekker, New York, pp 725, 1994
    [37] Sun, S.; Wong, Y. W.; Yao, Kangde and Mak, F. T., “Study on mechano-electro-chemical behavior of chitosan/poly(propylene glycol) composite fibers” J. Appl. Polym. Sci., 76, 4, p 542-551, 2000
    [38] Zheng, H.; Du, Y.; Yu, J.; Huang, R. and Zhang, L., “Preparation and characterization of chitosan/poly(vinyl alcohol) blend fibers” J. Appl. Polym. Sci., 80, 13, p 2558-2565, 2001
    [39] Zhang, M.; Li, X. H.; Gong, Y. D.; Zhao, N. M. and Zhang, X. F., “Properties and biocompatibility of chitosan films modified by blending with PEG” Biomaterials, 23, 13, p 2641-2648, 2002
    [40] Mucha, M., “Rheological properties of chitosan blends with poly(ethylene oxide) and poly(vinyl alcohol) in solution” Reac. Funct. Polym., 38, 1, p 19-25, 1998
    [41] Lee, S. B.; Lee, Y. M.; Song, Kang W. and Park, M. H., ”Preparation and Properties of Polyelectrolyte Complex Sponges Composed of Hyaluronic Acid and Chitosan and Their Biological Behaviors” J. Appl. Polym. Sci., 90, 4, p 925-932, 2003
    [42] Ng, L. T.; Guthrie, J. T.; Yuan, Y. J. and Zhao, H., “UV-cured natural polymer-based membrane for biosensor application” J. Appl. Polym. Sci., 79, 3, p 466-472, 2001
    [43] Sugimoto, M.; Morimoto, M.; Sashiwa, H.; Saimoto, H. and Shigemasa, Y., “Preparation and characterization of water-soluble chitin and chitosan derivatives” Carbohyd. Polym., 36, 1, p 49-59, 1998
    [44] Hoffman, A. S.; Chen, G.; Wu, X.; Ding, Z.; Kabra, B.; Randeri, K.; Schiller, M.; Ron, E.; Peppas, N. A. and Brazel, C., ”Graft copolymers of PEO-PPO-PEO triblock polyethers on bioadhesive polymer backbones: Synthesis and properties” Am. Chem. Soc., 38, 1, p 524-525, 1997
    [45] Amiji, M. M., “Synthesis of anionic poly(ethylene glycol) derivative for chitosan surface modification in blood-contacting applications” Carbohyd. Polym., 32, 3-4, p 193-199, 1997
    [46] Zhao, W.; Yu, L.; Zhong, X.; Zhang, Y. and Sun, J., “Compatibility and morphology of chitosan-poly(ethylene oxide) blends” J. Macromol. Sci. Phys., B34, 3, p 231-236, 1995,
    [47] Amiji, M. M., “Permeability and blood compatibility properties of chitosan-poly(ethylene oxide) blend membranes for haemodialysis “ Biomaterials, 16, 8, p 593-599, 1995
    [48] Jiang, W. H. and Han, S. J., “Study of interaction between polyethylene glycol and chitosan by viscosity method” J. Polym. Sci., Pol. Phys., 36, 8, p 1275-1281, 1998
    [49] Alexeev, V. L.; Kelberg, E. A.; Evmenenko, G. A. and Bronnikov, S. V., “Improvement of the mechanical properties of chitosan films by the addition of poly(ethylene oxide)” Polym. Eng. Sci., 40, 5, p 1211-1215, 2000
    [50] Yoen, J.; Jang, J. S.; Cho, Y. W.; Chung, H.; Park, R. W.; Kwon, I. C.; Kim, I. S.; Park, J. Y.; Seo, S. B.; Park, C. R. and Jeong, S., “Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect” J. Control. Release., 91, 1-2, p 135-145, 2003
    [51] Rebecca L. R. and David G. M., “Survey of the year 2000 commercial optical biosensor literature” J. Mol. Recognit. 14, 5, p 273-294, 2001
    [52] Calvo, P.; Remunan-Lopez, C.; Vila-Jato, J. L. and Alonso, M. J., “Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers” J. Appl. Polym. Sci., 63, 1, p 125-132, 1997
    [53] Cascone, M. G. and Maltinti, S., “Hydrogels based on chitosan and dextran as potential drug delivery systems” J. Mater. Sci-Mater. M., 10, 5, p 301-307, 1999
    [54] Quong, D. and Neufeld, R. J., “DNA protection from extracapsular nucleases, within chitosan- or poly-L-lysine-coated alginate beads” Biotechno. Bioeng., 60, 1, p 124-134, 1998
    [55] Gaserod, O.; Smidsrod, O. and Skjak-Braek, G. “Microcapsules of alginate-chitosan - I. A quantitative study of the interaction between alginate and chitosan” Biomaterials, 19, 20, p 1815-1825, 1998
    [56] Wang, H.; Li, W.; Lu, Y.; Wang, Z. and Zhong, W., “Studies on chitosan and poly(acrylic acid) interpolymer complex. II. Solution behaviors of the mixture of water-soluble chitosan and poly(acrylic acid)” J. Appl. Polym. Sci., 61, 12, p 2221-2224, 1996
    [57] Chang, K. L. B. and Lin, J., “Swelling behavior and the release of protein from chitosan-pectin composite particles” Carbohyd. Polym., 43, 2, p 163-169, 2000
    [58] Mi, F. L.; Shyu, S. S.; Lee, S. T. and Wong, T. B., “Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method “J. Polym. Sci. Pol. Phys., 37, 14, p 1551-1564, 1999
    [59] Wang, H.; Li, We.; Lu, Y. and Wang, Z., “Studies on chitosan and poly(acrylic acid) interpolymer complex. I. Preparation, structure, pH sensitivity, and salt sensitivity of complex-forming poly(acrylic acid): Chitosan semi-interpenetrating polymer network” J. Appl. Polym. Sci., 65, 8, p 1445-1450, 1997
    [60] Genta, I.; Costantini, M.; Asti, A.; Conti, B. and Montanari, L., “Influence of glutaraldehyde on drug release and mucoadhesive properties of chitosan microspheres” Carbohyd. Polym., 36, 2-3, p 81-88, 1998
    [61] Hirano, S.; Nagamura, K.; Zhang, M.; Kim, S. K.; Chung, B. G.; Yoshikawa, M. and Midorikawa, T., “Chitosan staple fibers and their chemical modification with some aldehydes” Carbohyd. Polym., 38, 4, p 293-298, 1999
    [62] Wan Ngah, W. S.; Endud, C. S. and Mayanar, R., “Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads” React. Funct. Polym., 50, 2, p 181-190, 2002
    [63] Rathke, T. D. and Hudson, S. M., “Review of chitin and chitosan as fiber and film formers” J. Macromol. Sci. R. M. C., C34, 3, p 375-437, 1994
    [64] Kang, D. Y.; Peng, T.; Goosen, M. F. A.; Min, J. M. and He, Y. Y., “pH-sensitivity of hydrogels based on complex forming chitosan: polyether interpenetrating polymer network” J. Appl. Polym. Sci., 48, 2, p 343-354, 1993
    [65] Wei, Y. C.; Hudson, S. M.; Mayer, J. M. and Kaplan, D. L., “Crosslinking of Chitosan fibers” J. Polym. Sci., Pol. Chem., 30, 10, p 2187-2193, 1992
    [66] Mi, F. L.; Sung, H. W. and Shyu, S. S., “Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker” J. Polym. Sci. Pol. Chem., 38, 15, p 2804-2814, 2000
    [67] Li, F.; Liu, W. G. and Yao, K. D., “Preparation of oxidized glucose-crosslinked N-alkylated chitosan membrane and in vitro studies of pH-sensitive drug delivery behaviour” Biomaterials, 23, 2, p 343-347, 2002
    [68] Elliott, W. H. and Elliott D. C., “Biochemistry and molecular biology” Oxford, Oxford University, 2001
    [69] 張為憲,食品化學,華香園, 1996
    [70] 張為憲, 高等食品化學, 華香園, 1987
    [71] Bosetto, M.; Arfaioli, P. and Pantani, O. L., “Study of the Maillard reaction products formed by glycine and D-glucose on different mineral substrates” Clay. Miner., 37, 1, p 195-204, 2002
    [72] George P. R., “Free Radicals in the Maillard Reaction” Food. Rev. Int., 19, 4, p113-118, 2003
    [73] 黃俊儒、陳榮輝, ”不同反應時間之幾丁聚醣—葡萄糖梅納反應產物之抑菌性與幾丁聚醣對魚糕之保存效果”食品科學, 24, 458, 1997
    [74] 蔡政翰, ”以化學修飾改善幾丁聚醣之溶解度”國立台灣大學食品科技研究所, 碩士論文, 1997
    [75] Li, X.; Tushima, Y.; Morimoto, M.; Saimoto, H.; Okamoto, Y.; Minami, S. and Shigemasa, Y., “Biological activity of chitosan-sugar hybrids: Specific interaction with lectin” Polym. Adv. Techno., 11, 4, p 176-179, 2000
    [76] 林芳慶, “薄膜結構之控制---非溶劑添加物對成膜的影響”中原大學化工所, 博士論文, 1997
    [77] 楊台鴻, “乙烯-乙烯醇共聚合體造膜機構之探討”台大化工所,博士論文,1991
    [78] Rajaraman, R.; Rounds, D. E.; Yen, S. P. S and Rembaum, A., Exp. Cell. Research. 88, 327, 1974
    [79] Lee, J. H.; Lee, J. W.; Khang, G. and Lee, H. B., “Interaction of cells on chargeable functional group gradient surfaces” Biomaterials, 18, 4, p 351-358, 1997
    [80] Ruardy, T. G.; Moorlag, H. E.; Schakenraad, J. M.; Van Der Mei, H. C. and Busscher, H. J., “Growth of fibroblasts and endothelial cells on wettability gradient surfaces” J. Colloid. Inter. Sci., 188, 1, p 209-212, 1997
    [81] Sugimoto, Y., “Effect on the adhesion and locomotion of mouse fibroblasts by their interactionwith differently charged substrates. A quantitative study by ulstrastructural methods” Exp. Cell. Res. 135, p 39–45, 1981
    [82] Hattori, S.; Andrade, J. D.; Hibbs, J. B. Jr.; Gregonis, D. E. and King, R. N., “Fibroblast cell proliferation on charged hydroxyethyl methacrylate copolymers” J. Colloid. Inter. Sci., 104, 1, p 72-78, 1981
    [83] Ohara P. T. and Buck, R. C., “Contact Guidance in Vitro. A Light, Transmission and Scanning Electron Microscopic Study” Exp. Cell. Res., 121, p 235-249, 1979
    [84] Chehroudi, B.; Gould, T. R. L. and Brunette, D. M., “Effects of a grooved titanium-coated implant surface on epithelial cell behavior in vitro and in vivo” J. Biomed. Mater. Res., 23, 9, p 1067-1085, 1989
    [85] Lampin, M.; Warocquier-Clerout, R.; Legris, C.; Degrange, M. and Sigot-Luizard, M. F., “Correlation between substratum roughness and wettability, cell adhesion, and cell migration” J. Biomed. Mater. Res., 36, 1, p 99-108, 1997
    [86] Knox, P.; Crooks, S. and Rimmer C. S., “Role of fibronectin in the migration of fibroblasts into plasma clots” J. Cell. Biol. 102, p 2318-2323, 1986
    [87] Chupa, J. M.; Foster, A. M.; Sumner, S. R.; Madihally, S. V. and Matthew, H. W. T., “Vascular cell responses to polysaccharide materials: In vitro and in vivo evaluations” Biomaterials, 21, 22, p 2315-2322, 2000
    [88] Chatelet, C.; Damour, O. and Domard, A., “Influence of the degree of acetylation on some biological properties of chitosan films” Biomaterials, 22, 3, p 261-268, 2001
    [89] Gong, H.; Zhong Y.; Li J.; Gong Y.; Zhao N. and Zhang, X., “Studies on nerve cell affinity of chitosan-derived materials” J. Biomed. Mater. Res., 52, 2, p 285-295, 2000
    [90] Katsuaki, O.; Yoshio, S.; Hirohumi, Y.; Keiichi, I.; Akira, K.; Toshihiro, A. and Masayuki, I., “Photocrosslinkable chitosan as a biological adhesive” J. Biomed. Mater. Res., 49, 2, p 289-295, 2000
    [91] Zhang, M.; Li, X. H.; Gong, Y. D.; Zhao, N. M. and Zhang, X. F., “Properties and biocompatibility of chitosan films modified by blending with PEG” Biomaterials, 23, 13, p 2641-2648, 2002
    [92] Dee, K. C. and Bizios, R., “Mini-review: proactive biomaterials and bone tissue engineering” J. Eng. Appl. Sci., 50, 4, p 438-442, 1996
    [93] Klein, C. P. A. T.; Driessen, A. A.; de Groot, K. and van den Hooff, A., “Biodegradation behavior of various calcium phosphate materials in bone tissue” J. Biomed. Mater. Res., 17, 5, p 769-784, 1983
    [94] Hench, L. L. and Ethridge, E. C., “Biomaterials, an interfacial approach” New York, Academic Press, 1982
    [95] Bian, J. J.; Kim, D. W.; and Hong, K. S., “Microwave dielectric properties of Ca2P2O7” J. Eur. Ceram. Soc., 23, 14, p 2589-2592, 2003
    [96] Ducheyne, P. and Qiu, Q., “Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function” Biomaterials, 20, 23-24, p 2287-2303, 1999
    [97] Lin, F. H.; Lin, C. C.; Lu, C. M. Liu, H. C.; Sun, J. S. and Wang, C. Y., “Mechanical properties and histological evaluation of sintered β-Ca2P2O7 with Na4P2O7·10H2O addition” Biomaterials, 16, 10, p 793-802, 1995
    [98] Yamamuro, T.; Nakamura, T.; Iida, H.; Kawanabe, K.; Matsuda, Y.; Ido, K.; Tamura, J. and Senaha, Y., “Development of bioactive bone cement and its clinical applications” Biomaterials, 19, 16, p 1479-1482, 1998
    [99] 吳學禮, “食物香從那裡來﹖--梅納反應產生之香氣(1)” 烘焙工業, p 48-52, 1996
    [100] Hodge, J. E., “Chemistry of Browning Reactions in Model Systems” J. Agric. Food. Chem. 1, p 928-943, 1953
    [101] Ames, J. M., “Control of the Maillard Reaction in Food Systems” Trends. Food. Sci. Technol. 1, p 150-154, 1990
    [102] Martins, S. I. F. S.; Jongen, W. M. F. and van Boekel M. A. J. S., “A review of Maillard reaction in food and implications to kinetic modeling” Trends, Food. Sci. Technol., 11, p 364-373, 2001
    [103] De Bruijn, J. M., “Monosaccharides in Alkaline Medium:Isomerization, Degradation, Oligomerization” PhD Thesis, University of Technology, Delft, 1986
    [104] Freyman, T. M.; Yannas, I. V. and Gibson L. J., “Cellular materials as porous scaffolds for tissue engineering” Prog. Mat. Sci., 46, p 273-282, 2001
    [105] 張志純, “冰凍乾燥法” 臺北市, 徐氏基金會, 1983
    [106] Searles, J. A; Carpenter, J. F. and Randolph T. W., “The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf” J. Pharm. Sci., 90, p 860-871, 2001
    [107] Franks F., “Freeze-drying of bioproducts: Putting principles into practice” Eur. J. Pharm. Biopharm., 45, p 221-229, 1998
    [108] Cohen, J. S. and Yang, T. C. S., “Progress in food dehydration” Trends. Food. Sci. Technol., 6, 1, p 20-25, 1995
    [109] Cleland, J. L.; Johnson, O. L.; Putney, S. and Jones, A. J. S., “Recombinant human growth hormone poly(lactic-co-glycolic acid) microsphere formulation development” Adv. Drug. Del. Rev., 28, 1, p 71-84, 1997,
    [110] Madihally, S. V. and Matthew, H. W. T., “Porous chitosan scaffolds for tissue engineering” Biomaterials, 20, p 1133-1142, 1999
    [111] Ma, J.; Wang, H.; He, B. and Chen, J., “A preliminary in vitro study on the fabrication and tissue engineering application of a novel chitosan biolayer material as a scaffold of human neofetal dermal fibroblast” Biomaterials, 22, p 331-336, 2001
    [112] Digenis, G. A.; Thomas, B. G. and Shah, V. P., “Cross-linking of gelatincapsules and its relevance to their in vitro-in vivo performance” J. Pharm. Sci., 83, p 915-21, 1994
    [113] Tirkistani, F. A. A., “Thermal analysis of some chitosan Schiff bases “Polym. Degrad. Stabil., 60, 1, p 67-70, 1998
    [114] Lee, S. J.; Kim, S. S. and Lee, Y. M., “Interpenetrating polymer network hydrogels based on poly(ethylene glycol) macromer and chitosan” Carbohyd. Polym. 41, 2, p 197-205, 2000
    [115] Knaul, J. Z.; Hudson, S. M. and Creber, K. A. M., “Crosslinking of chitosan fibers with dialdehydes: Proposal of a new reaction mechanism” J. Polym. Sci. Poly. Phys., 37, 11, p 1079-1094, 1999
    [116] Arvanitoyannis, I.; Kolokuris, I.; Nakayama, A.; Yamamoto, N. and Aiba, S. I., “Physico-chemical studies of chitosan-poly(vinyl alcohol) blends plasticized with sorbitol and sucrose” Carbohyd. Polym., 34, 1-2, p 9-19, 1997
    [117] Tomihata, K. and Ikada, Y., “In vitro and in vivo degradation of films of chitin and its deacetylated derivatives” Biomaterials, 18, 7, p 567-575, 1997
    [118] Patel, V. R. and Amiji, M. M., “pH-Sensitive Swelling and Drug-Release Properties of Chitosan-Poly(ethylene oxide) Semi-interpenetrating” Polym. Netw. ACS. Symp. Ser., 627, p 209, 1996
    [119] Goycoolea, F. M.; Heras, A.; Aranaz, I.; Galed, G.; Fernandez-Valle, M. E. and Arguelles-Monal, W., “Effect of Chemical Crosslinking on the Swelling and Shrinking Properties of Thermal and pH-Responsive Chitosan Hydrogels” Macromol. Biosci., 3, 10, p 612-619, 2003
    [120] Nordtveit, R. J.; Varum, K. M. and Smidsrod, O., “Degradation of partially N-acetylated chitosans with hen egg white and human lysozyme” Carbohyd. Polym., 29, 2, p 163-167, 1996
    [121] Lee, K. Y.; Ha, W. S. and Park, W. H., “Blood compatibility and biodegradability of partially N-acylated chitosan derivatives” Biomaterials, 16, 16, p 1211-1216, 1995
    [122] Fennema, O. R., “Principles of food science” New York, Marcel Dekker, 1975
    [123] Brands, C. M. J.; Alink, G. M.; Van Boekel, M. A. J. S. and Jongen, W. M. F., “Mutagenicity of heated sugar–casein systemseffect of the Maillard reaction” J. Agri. Food. Chem., p 2271-2275, 2000
    [124] Healy, K. E.; Lom, B. and Hockberger, P. E., “Spatial distribution of mammalian cells dictated by material surface chemistry” Biotechnol. Bioeng., 43, 8, p 792-800, 1994
    [125] 邱承美, 陶金華, “儀器分析原理” 科文出版社, 1994
    [126] Sheu, M. T.; Huang, J. C.; Yeh, G. C. and Ho, H. O., “Characterization of collagen gel solutions and collagen matrices for cell culture” Biomaterials, 22, 13, p 1713-1719, 2001
    [127] Arguelles-Monal, W.; Goycoolea, F. M.; Peniche, C. and Higuera-Ciapara, I., “Rheological study of the chitosan/glutaraldehyde chemical gel system” Polym. Gels. Netw., 6, 6, p 429-440, 1998
    [128] Hofmann, T., “Quantitative studies on the role of browning precursors in the Maillard reaction of pentoses and hexoses with l-alanine” J. Agri. Food. Chem., 209, 2, p 113 – 121, 1999
    [129] Guan, Y. L.; Shao, L. and Yao, K. D., “Study on correlation between water state and swelling kinetics of chitosan-based hydrogels” J. Appl. Polym. Sci., 61, 13, p 2325-2335, 1996
    [130] Anselme, K.; Linez, P.; Bigerelle, M.; Le Maguer, D.; Le Maguer, A.; Hardouin, P.; Hildebrand, H. F.; Iost, A. and Leroy, J. M., “Relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour” Biomaterials, 21, 15, p 1567-1577, 2000
    [131] Shi, S.; Gronthos, S.; Chen, S.; Reddi, A.; Counter, C. M.; Robey, P. G. and Wang, C. Y., “Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression” Nat. Biotechnol., 20, 6, p 587-591, 2002
    [132] 蔡燕鈴, “含水溶性藥物之乙基纖維素微膠囊的製備”國立中央大學化學工程研究所, 博士論文, 1999
    [133] Dyrton, A. C. and Monteiro Jr., C. A., “Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system” Inter. J. Biol. Macromol., 26, p 119-128, 1999
    [134] Lee, Y. M.; Nam, S. Y. and Woo, D. J., “Pervaporation of ionically surface crosslinked chitosan composite membranes for water-alcohol mixtures” J. Mem. Sci., 133, 1, p 103-110, 1997
    [135] Guo, B.; Elgsaeter, A.; Christensen, B. E. and Stokke, B. T., “Sclerox-chitosan co-gels: Effects of charge density on swelling of gels in ionic aqueous solution and in poor solvents, and on the rehydration of dried gels” Polym. Gels. Netw., 6, 6, p 471-492, 1998
    [136] Usami, Y.; Okamoto, Y.; Takayama, T.; Shigemasa, Y. and Minami, S., “Effect of N-acetyl-D-glucosamine and D-glucosamine oligomers on canine polymorphonuclear cells in vitro” Carbohyd. Polym., 36, 2-3, p 137-141, 1998
    [137] Lin, F. H.; Liao, C. J.; Chen, K. S.; Sun, J. S. and Liu, H. C., “Degradation behaviour of a new bioceramic: Ca2P2O7 with addition of Na4P2O7·10H2O” Biomaterials, 18, 13, p 915-921, 1997
    [138] Wang, J. W.; Hon, M. H., “Preparation and characterization of pH sensitive sugar mediated (polyethylene glycol/chitosan) membrane” J. Mater. Sci-Mat. Med., 14, 12, p 1079-1088, 2003
    [139] Yao, C. H.; Lin, F. H.; Huang, C. W. and Wang, C. Y., “Biological effects and cytotoxicity of the composite combined with tricalcium phosphate and glutaraldehyde crosslinked gelatin for orthopedic application” Ann. Inter. Conf. IEEE. Eng. Med. Bio. Proc., 5, p 2042-2043, 1996
    [140] Zhang, R. and Ma, P. X., “Poly(α-hydroxyl acids)/hydroxyappatite porous composites for bone-tissue engineering. I. Preparation and morphology” J. Biomed. Mater. Res. 44, p 446-455, 1999
    [141] Pozzo. A. D.; Vanini, L.; Fagnoni, M.; Guerrini, M.; Benedittis A. D. and Muzzarelli R. A. A., “Preparation and characterization of poly(ethylene glycol)-crosslinked reactylated chitosans” Carbohyd. Polym., 42, p 201-206, 2000
    [142] Searles, J. A.; Carpenter, J. F. and Randolph, T. W., “The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf” J. Pharm. Sci., 90, p 860-871, 2001
    [143] Yamaguchi, I.; Tokuchi, K.; Fukuzaki, H.; Koyama, Y.; Takakuda, K.; Monma, H. and Tanaka, J., “Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites” J. Biomed. Mater. Res., 55, p 20-27, 2001

    下載圖示 校內:立即公開
    校外:2004-07-05公開
    QR CODE