簡易檢索 / 詳目顯示

研究生: 陳志榮
Chen, za-zon
論文名稱: 流體中奈米微粒自結合傳遞與釋放技術之研發
Development of Nano-Particles Self-Assembling and Seeding Technology in Liquid Carriers
指導教授: 賴新一
Lai, Hsin-Yi Steven
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 180
中文關鍵詞: 分子動力模擬布朗運動奈米微粒自結合擴散磁性流體釋放載體傳遞
外文關鍵詞: Molecular Dynamics simulation, brownian dynamics, assembly, magnetic fluid, nanoparticles, release
相關次數: 點閱:105下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   早期具特定功能效果之微粒(如藥物)傳遞,大多利用微容器、粉體、流體等載體,經由某些控制機制(如外加電場、流場)以使載體能順利的到達到目的地。利用這類載體充當媒介的傳遞方式,一般難予高效率地將功能性粒子投遞到目的地,且大部分微粒在未到達目的時,即已就被沿途其他的物體(如管壁、器官、空氣)所吸收與分解,不但載體無法傳送到患部,且因其他物體吸收了不需要的微粒,常會造成一些不可預料的副作用,因此如何解決這類問題,提出解決之道,已成為當務之急。問題的癥結主要在於目前尚無一套完整的理論,可供此類研究與預估之用。有鑑於此,本研究乃提出一套奈米微結構自結合傳輸之理論,並針對特定應用,提出一組實測系統,以印證方法之可行性。
      針對功能性粒子傳遞中所具備的自結合、載體傳遞與釋放等三個功能,首先將奈米微粒進行表面正或負電性鍍膜,並與表面負或正電性之功能性奈米微粒組成載體;再將此微粒載體投入受體中,配合磁性引導直接將微粒載體運送到目標區域;然後利用特定的釋放機制(如加熱或生物降解特性)讓微粒從載體上脫落,讓功能性粒子從載體上剝離,慢慢地釋放並擴散以通過目標區域的薄膜(如細胞膜)障礙直達目的地,此法可調控目的地所需之功能性微粒數量,使達成最佳的微粒傳遞效果。為完成上述功能的理論建構,本計畫首先採用了DLVO理論,配合電磁與流體力學理論,分別對自結合、載體傳遞與釋放擴散分別建模並加以整合,然後藉由分子動力與布朗動力模擬法,求取參數。
      由本文所提之奈米微粒自結合、傳遞與釋放技術之理論估算模型與文獻資料比對,發現其平均誤差皆落在10%內,證明本理論精確可行。利用本研究之模型推估,可準確取得製程參數,預估奈米系統中之微觀參數以改善目前耗時又不經濟的實驗方式,大幅提高生產效率。最後將模擬所推估的數值分別帶入整合模型,即可用以探討各功能間之相關性,並可對微粒傳遞效率進行精算評估,以達到系統模型彈性模組化與電腦速算精確重演之雙重目標,此目標已經由本研究之整合估算,其傳遞效率可以藉由本模型之微調,比以往之效率提高10~15%,證實了此技術是非常有效的。

      Traditionally, the delivery of functional particles in liquid media makes good use of capsules, powder and various liquid carriers. Unfortunately, in the traditional ways of delivery, a large portion of functional particles do not arrive at the infected areas. They were decomposed and assimilated by the organs, vessel walls and air bulbs in the way to the infected areas. That is not only inefficient, but also detrimental for bringing in various unexpected side effects to the major system. Thus, how to obtain a better model to allow the delivery process to be more accurately understood and controlled becomes extremely important and urgently needed in many industrial and medical practices.
      In view of the need, a new approach by using the nano-particles coating and self-assembled technique is proposed for study. In the functional particles delivery system, three major processes, namely, the self-assembly, the seeding transportion, and the release of nano-particles, are carefully studied. In the self-assembly process, the surface of nano-particles are polarized and then assembled with functional particles to make a complete carrier. In the seeding transportation process, the carrier is injected into the neighborhood of the received zone, and then guided in the fluid flow to the infected areas by using the external magnetic media. In the particles releasing process, the nano-particles were released from the carrier by using either α-ray optical separation or biomedical dissolution techniques. The drug molecules are diffused into the cell membrane of the infected objects with an appropriate control on functional particles supply and seeding effect. In order to model the aforementioned processes, the project employs the theories of DLVO, electromagnetics and hydrodynamics for nanoparticle self-assembly, seeding, releasing and effect tracing. The molecular dynamics is employed to evaluate the process parameters for each of the subprocesses instead of using traditional empirical average values.
      The interrelation among these three sub-processes is investigated and an integrated model is proposed. A computerized system is set up to conduct both the numerical and experimental data comparison for signature verification. The results indicate that the modeling procedure proposed in the work is satisfactory.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 IX 表目錄 XV 符號說明 XVI 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 1.3 研究方法 5 1.3.1 自結合模型之研究方法 5 1.3.2 載體傳遞模型之研究方法 7 1.3.3 微粒釋放擴散之研究方法 9 1.4 章節瀏覽 10 第二章 文獻回顧與基本假設 13 2.1 本研究相關之文獻回顧 13 2.1.1 奈米微粒自結合之文獻回顧 13 2.1.2 奈米微粒之磁性傳遞文獻回顧 14 2.1.3 功能性粒子釋放之文獻回顧 15 2.1.4 磁性奈米微粒補助治療之文獻回顧 16 2.1.5 文獻回顧總結 16 2.2 本研究之假設條件 17 2.2.1 奈米微粒自結合之假設條件 18 2.2.2 磁性載體在管路中傳送之假設條件 19 2.2.3 奈米微粒擴散通過薄膜之假設條件 20 第三章 理論模型建構 21 3.1 微粒載體傳送之系統規劃與研究流程 21 3.1.1 微粒載體傳送系統規劃與介紹 21 3.1.2 細部與整合模型架構 26 3.1.3 研究規劃與流程圖 28 3.2 功能性奈米微粒自組裝模型 31 3.2.1 系統動態方程式建構 31 3.2.2 數值分析演算理論與步驟 41 3.2.3 自結合量與其他重要參數之求取 43 3.2.4 自結合之模擬流程 46 3.3 磁性載體傳送模型 48 3.3.1 系統動態方程式建構 48 3.3.2磁場與流場之設定 56 3.3.3 傳遞速率及其他重要參數之求取 59 3.3.4 磁性載體傳遞之模擬流程 62 3.4 功能性奈米微粒擴散釋放模型 65 3.4.1 系統動態方程式之建構 65 3.4.2 數值分析演算理論與步驟 71 3.4.3 通量及其他重要參數之求取 72 3.4.4 奈米微粒釋放之模擬流程 72 3.5 系統整合模型 75 3.5.1 整合系統參數之求取與討論 75 3.5.2 系統整合模型模擬流程 78 第四章 理論模擬結果印證 83 4.1 自結合模擬結果與印證 83 4.1.1 單顆膠體與奈米微粒自結合模擬結果與印證 83 4.1.2 固定濃度的膠體與不同濃度奈米微粒自結合模擬結果 91 4.1.3不同載體尺寸的結合量模擬結果 99 4.2 微粒傳遞模擬結果與印證 105 4.2.1 磁性流體在外加磁場下之微觀結構分析 105 4.2.2 磁性流體在外加磁場下之響應時間估算 110 4.2.3 剪切黏滯係數估算與驗證 114 4.2.4 磁性引導速度估算 119 4.3 微粒釋放模擬結果與印證 123 4.3.1 釋放微觀行為分析和通量估算與印證 123 4.3.2 薄膜擴散係數之求取 130 4.3.3 布朗力對粒子間作用力之影響評估 132 第五章 整合模型應用 137 5.1模型整合之估算與應證 137 5.1.1 初始參數設定 137 5.1.2 自結合模型估算功能性奈米微粒攜帶量 139 5.1.3 傳遞模型預估藥物通量 139 5.1.4 載體集中在受體之密度分佈 143 5.1.5 藥物從載體上的釋放通量估算 144 5.1.6 功能性奈米微粒釋放擴散通量估算 146 5.1.7 整體傳遞效率評估 148 5.1.8 微粒傳遞設計流程 150 5.2應用(一): 磁性分離 152 5.2.1 初始環境規劃 152 5.2.1 參數估算流程與結果 153 5.3 應用(二): 新型生物晶片製作法設計 156 5.3.1 初始環境規劃 156 5.3.2參數估算流程與結果 158 第六章 總結與建議 163 6.1 總結 163 6.2 建議 165 參考文獻 159 附錄A Lengvien方程解析 169

    1. Feke, D.L., Prabhu, N.D., Mann, J.A. and Mann, J.A., “A Formulation of the Short-Range Repulsion between Spherical Colloidal Particles,” American Chemical Society, Vol. 88, pp. 5735-5739, 1984.
    2. Striolo, A., Bratko, D., Prausnitz, J.M., Elvassore N., Bertucco, A., “Influence of Polymer Structure upon Active- Ingredient Loading: A Monte Carlo Simulation Study for Design of Drug-Delivery Devices,” Fluid Phase Equilibria, Vol. 183-184, pp. 341-345, 2001.
    3. Feng, J., Ruckenstein, “Monte Carlo Simulation of Polyampholyte -Nanoparticle Complexation,” Polymer, Vol. 44, pp. 3141-3150, 2003.
    4. Tartaj, P., Morales, M., Veintemillas, V.S., Gonzalez, C. T. and Serna, C.J, “The Preparation of Magnetic Nanoparticles for Applications in Biomedicine,” J. Phys. D: Appl. Phys., Vol. 36, pp. R182-R197, 2003.
    5. Prodan, D., Chaneac, C., Tronc, E., Jolivet, J.P., Cherkaour, R., Ezzir, A., Nogues, M., Dormann, J.L., “Adsorption Phenomena and Magnetic Properties of r-Fe2O3 Nanoparticles,” Journal of Magnetism and Magnetic Materials, Vol. 203, pp. 63-65, 1999.
    6. Nguyen, T.T. and Shklovskii, B.I., “Adsorption of Charged Particles on an Oppositely Charged Surface: Oscillation inversion of Charge,” Physical Review E, Vol. 64.041407, pp. 1-9, 2001.
    7. Imshennik, V.K., Suzdalev, I.P., Stavinskaya, O.N., Shklovskaya, N.I., Schunemann, V., Trautwein, A.X., Winkler, H., “Preparation and Characterization of Porous Carbon Loaded with Iron Particles: A Possible Magnetic Carrier of Medical Drugs,” Microporous Materials, Vol. 10, pp. 225-230, 1997.
    8. Lvov, Y., McShane, M., Villiers, M.D., Pishko, M., “Nanoengineered Shells for Encapsulation and Controlled Release,” NSF Nanoscale Science and Engineering Grantees Conference, Vol. 0210298, pp. 1-3, 2003.
    9. Liao, Q., Chen, L., Jin, X., “Brownian Dynamics Simulation of Film Formation of Mixed Polymer Latex in the Water Evaporation Stage” Journal of Colloid and Interface Science, vol. 227, pp. 84-94, 2000.
    10. Ramos, L., Lubensky, T.C., Dan, N., Nelson, P., Weitz, D.A., “Surfactant-Mediated Two-Dimensional Crystallization of Colloidal Crystals,” Science, Vol. 286, pp. 2325-2328, 1999.
    11. Mbamala, E.C. and Grunberg, H.V., “Charged Colloids and Proteins at an Air-Water Interface: The Effect of Dielectric Substrates on Interaction and Phase Behavior,” Physical Review, Vol. 67.031608, pp. 1-11, 2003.
    12. Aranda-Espinoza, H., Lubensky, T.C., Nelson Philip, Ramos Laurence, Weitz D.A., “Electrostatic Repulsion of Positively Charged Vesicles and Negatively Charged Objects,” Science, Vol. 285, pp. 394-397, 1999.
    13. Satoh, A., Chantrell, R.W., Coverdale, G.N., and Kamiyama, S.I., “Stokesian Dynamics Simulations of Ferromagnetic Colloidal Dispersions in a Simple Shear Flow,” Journal of Colloid and Interface Science, Vol. 203, pp. 233-248, 1998.
    14. Satoh, A., “Comparison of Approximations between Additivity of Velocities and Additivity of Forces for Stokesian Dynamics Methods,” Journal of Colloid and Interface Science, Vol. 243, pp. 342-350, 2001.
    15. Odenbach, S., “Magnetic Fluids-Suspensions of Magnetic Dipoles and Their Magnetic Control,” Institute of Physics Publishing, Vol. 15, pp. S1497-S1508, 2003.
    16. Satoh, A., Chantrell, R.W., and Coverdale, G.N., “Brownian Dynamics Simulations of Ferromagnetic Colloidal Dispersionsin a Simple Shear Flow,” Journal of Colloid and Interface Science, Vol. 209, pp. 44-59, 1999.
    17. Satoh, A., and Coverdale, G. N., and Chantrell, R. W., “Stokesian Dynamics Simulations of Ferromagnetic Colloidal Dispersions Subjected to a Sinusoidal Shear Flow,” Journal of Colloid and Interface Science, Vol. 231, pp. 238-246, 2000.
    18. Satoh, A., Chantrell, R.W., Kamiyama, S.I., and Coverdale, G.N., “Three Dimensional Monte Carlo Simulations of Thick Chainlike Clusters Composed of Ferromagnetic Fine Particles,” Journal of Colloid and Interface Science, Vol. 181, pp. 422-428, 1996.
    19. Chin C.J., Yiacoumi, S., and Tsouris, C., “Shear-Induced Flocculation of Colloidal Particles in Stirred Tanks,” Journal of Colloid and Interface Science, Vol. 206, pp. 532-545, 1998.
    20. Morimoto, H., and Maekawa, T., “Cluster Structures and Cluster-Cluster Aggregations in a Two-Dimensional Ferromagnetic Colloidal System,” J. Phys. A: Math. Gen., Vol. 33, pp. 247-258, 2000.
    21. Melle, S., Galderon, O.G., Rubio, M.A., Fuller, G.G., “Rotational Dynamics in Dipolar Colloidal Suspensions: Video Microscopy Experiments and Simulations Results,” J. Non-Newtonian Fluid Mech, Vol.102, pp. 135-148, 2002.
    22. Simon, T.M., Reitich, F., Jolly, M.R., I., K.and Banks, H.T., “The Effective Magnetic Properties of Magnetorheological Fluids,” Mathematical and Computer Modelling, Vol. 33, pp. 273-284, 2001.
    23. Pai, V.M., Chen, C.J., Haik, Y., “Microscopic Flow Visualization System for Fluids in Magnetic Field,” Journal of Magnetism and Magnetic Materials, Vol. 194, pp. 262-266, 1999.
    24. Bossis, G., Lacis, S., Meunie,r A., Volkova, O., “Magnetorheological Fluids,” Journal of Magnetism and Magnetic Materials, Vol. 252, pp. 224-228, 2002.
    25. Forbes, Z.G., Yellen, B.B., Barbee, K.A., and Friedman, G., “An Approach to Targeted Drug Delivery Based on Uniform Magnetic Fields,” Paper, Vol. 38(EC06), pp. 1-6, 2003.
    26. Satoh, A. “Rheological Properties and Particle Behaviors of A Nondilute Colloidal Dispersion Composed of Ferromagnetic Spherocylinder Particles Subjected to A Simple Shear Flow (Analysis by Means of Mean-Field Approximation),” Journal of Colloid and Interface Science, Vol. 262, pp. 263-273, 2003.
    27. Ramachandran, V., Tryggvason, G., and Fogler, S.H., “Low Reynolds Number Interactions between Colloidal Particles Near the Entrance to A Cylindrical Pore,” Journal of Colloid and Interface Science, Vol. 229, pp. 311-322, 2000.
    28. Ly H.V., Reitich, F., Jolly, M. R., Banks, H.T., and Ito, K., “Simulations of Particle Dynamics in Magnetorheological Fluids,” Journal of Computational Physics, Vol. 155, pp. 160-177, 1999.
    29. Jarkova, E., Pleiner, H., Mulle,r H. W, Fink, A., and Brand, H. R., “Hydrodynamics of Nematic Ferrofluids,” The European Physical Journal, Vol.E5, pp.583-588, 2001.
    30. Faisant, N., Siepmann, J., Benoit, J.P., “PLGA-Based Microparticles: Elucidation of Mechanisms and a New, Simple Mathematical Model Quantifying Drug Release,” European Journal of Pharmaceutical Sciences, Vol. 15, pp. 355-366, 2002.
    31. Furnkawa, S., Nitta, T., “Non-Equilibrium Molecular Dynamics Simulation Studies on Gas Permeation Across Carbon Membranes with Different Pore Shape Composed of Micro-Graphite Crystallites,” Journal of Membrane Science, Vol. 178, pp. 107-119, 2000.
    32. Torchilin, V.P., “Drug Targeting,” European Journal of Pharmaceutical Sciences, Vol. 11, pp. S81-S91, 2000.
    33. Mehta, R.V., Upadhyay, R.V., Charles, S.W. and Ramchand, C.N., “Direct Binding of Protein to Magnetic Particles,” Bio-technology Techniques, Vol. 11, No. 7, pp. 493-496,1971.
    34. Plaza, A.C., and Quirantes, A., and Delgado, A.V., “Stability of Dispersions of Colloidal Hematite/Yttrium Oxide Core-Shell Particles,” Journal of Colloid and Science, Vol. 252, pp. 102-108, 2002.
    35. Fang M, Grant, Patrick McShane, M.J.,.Sukhorukov, Goulb, V.O., Lvov, Y.M., “Magnetic Bio/Nanoreactor with Multilayer Shell of Glucose Oxidase and Inorganic Nanoparticles, ” Langmuir, Vol. 18, pp. 6338-6344, 2002.
    36. Iwasaka M. and Ueno S., “Dissolution of Thrombus under High Gradient Fields,” IEEE Transactions on Magnetics, Vol. 32, pp. 5130-5132, No. 5, 1996.
    37. Iwasaka, M., and Ueno S., “Diamagnetic Properties of Fibrin and Fibrinogen,” IEEE Transactions on Magnetics, Vol. 30, pp. 4695-4697 No. 6, 1994.
    38. Voltairas P.A., Fotiadis D.I., Michalis, L.K., “Hydrodynamics of magnetic drug targeting,” Journal of Biomechanics, Vol. 35, pp. 813-821, 2002.
    39. Satoh A.., Chantrell R.W., Kamiyama, S.I. and Coverdale, G.N., “Two-Dimensional Monte Carlo Simulations to Capture Thick Chain-like Clusters of Ferromagnetic Particles in Colloidal Dispersions,” Journal of Colloid and interface Science , Vol. 178, pp. 620-627, 1996.
    40. Yiacoumi S., Rountree D. A., and Tsouris C., “Mechanism of Particle Flocculation by Magnetic Seeding,” Journal of Colloid and Interface Science, Vol.184, pp.477-488, 1996.
    41. Grassi. M., Coceani N., and Magarotto, L. “Mathematical Modeling of Drug Release from Microemulsions: Theory in Comparison with Experiments,” Journal of Colloid and Interface Science, Vol. 288, pp. 141-150, 2000.
    42. Faisant N., J. Siepmann, J., and Benoit, J.P. “Mathematical Modeling of Drug Release from Bioerodible Microparticles: Effect of Gamma-irradiation,” European Journal of Pharmaceutics and Bio-pharmaceutics, Vol. 56, pp. 271-279, 2003.
    43. Theresa, M., Pieter, R., “Drug Delivery Systems: Entering the Mainstream,” Science, Vol. 303, pp. 1818-1822, 2004.
    44. Molina, Bolivar, J.A., Galisteo, F., Hidalego, A.R., “The Role Plared by Hydration Forces in the Stability of Protein-coated Particles: Non-classical DLVO behavior,” Colloids and Surfaces B: Bio-interfaces, Vol. 14, pp. 3-17, 1999
    45. Elaissari, A., and Bourrel, V., “Thermosensitive Magnetic Latex Particles for Controlling Protein Adsorption and Desorption,” Journal of Magnetism and Magnetic Materials, Vol. 225, pp. 151-155, 2001.
    46. Alexiou, C., Klein, R., Schmidt, A., Bergemann, C., Arnold, W., “Magnetic Drug Targeting: Biodistribution and Dependency on Magnetic Field Strength,” Journal of Magnetism and Magnetic Materials.Vol. 252, pp. 360-362, 2002.
    47. Pankhurst, Q.A., Connolly, J., Dobson, J., “Application of Magnetic Nanoparticles in Biomedicine,” J. of Phy. D: Appl. Phy., Vol. 36, pp. R167-R181, 2003.
    48. Bergemann, C., Oster, J., Brassard, L. “Magnetic Ion-exchange Nano and Microparticles for Medical, Biochemical and Molecular Biological Applications,” Journal of Magnetism and Magnetic Materials, Vol. 194, pp. 45-52, 1999.
    49. Rudge, S., Peterson, C., Vessely, C., “Adsorption and Desorption of Chemotherapeutic Drug from a Magnetically Targeted Carrier (MTC),” Journal of Controlled Release, Vol. 74, pp. 335-340, 2001.
    50. Andreas, J., Scholz, R., Wust, P., Roland, F., “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in Vitro,” Journal of Magnetism and Magnetic Materials, Vol. 194, pp. 185-196, 1999.
    51. Chang, Y.I., Whang J., “Theoretical Simulation of the Collection Efficiencies of Brownian Particles,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 125, pp. 137-348, 1997.
    52. Wang, W., and Skeel, R.D., “Analysis of Few Numerical Integration Method for the Langevin Equation,” Molecular Physics, Vol. 101, No. 14, pp. 2149-2156, 2003.
    53. Ando, T., Yamato, I., “Development of an Atomistic Brownian Dynamics Algorithm with Implicit Solvent Model for Long Time Simulation,” J. Comput. Chem. Jpn, Vol. 1, No. 3, pp. 115-122, 2002.
    54. Choi, J.W., Jennfer, H., “An Integrated Microfluidic Biochemical Detection System for Protein Analysis with Magnetic Bead-based Sampling Capabilities” Lab Chip, Vol. 2, pp. 27-30, 2002.
    55. Anderson, J.L., Quinn, J.A., “Restricted Transport in Small Pores: a Model Forsteric Exclusion and Hindered Particle Motion,” Biophys. J, vol. 14, pp. 130-150, 1974.
    56. Mary, T., Nikolaos, A., “Transport of Ionizable Drugs and Protein in Crosslinked Poly (acrylic acid) and Poly (acrylic acid-co-2-hydroxyethy1 methacrylate) Hydrogels. II. Diffusion and Release Studies,” Vol. 48, pp. 47-56, 1997.
    57. Mizukami, K., Takaba, H., Miyamoto, A., “Permeability of Ar and He Through an Inorganic Membrane: A Molecuar Dynamics Study,” Vol. 119, pp. 330-334, 1997.
    58. Seo, Y.G., Seaton, N. A., “Monte Carlo Simulation of Transport Diffusion in Nanoporous Carbon Membranes,” J. of Menbrane Sci., Vol. 195, pp. 65-73, 2002.
    59. Hafeli, U.O., Ciocan, R., Dailey, J.P., “Characterization of Magnetic Particles and Their Magnetophoretic Mobility Using a Digital Microscopy Method,” European Cells and Materials, Vol. 3 suppl. 2, pp. 24-27, 2002.
    60. Iusan, V., Buioca, S., “Magnetic fluids of low viscosity,” Journal of Magnetism and Magnetic Materials. Vol. 201, pp. 38-40, 1999.
    61. Senyei, a., Widder, K., Czerlinski, G., “Magnetic Guidance of Drug-carrying microspheres,” J. Appl. Phys, Vol. 49, No. 6, pp. 3578-35883, 1987.
    62. Kim, A.S., Stolzenbach, K. D., “Aggregate Formation and Collision Efficiency in Differential Settling,” Journal of Colloid and Interface Science, Vol. 271, pp. 110-119, 2004.
    63. Rife, J.C., Miller, M.M., Sheehan, P.E., “Design and Performance of GMR Sensors for the Detection of Magnetic Microbeads in Biosensors,” Sensors and Actuators A, Vol. 107, pp. 209-218, 2003.
    64. Safarik, I., Safarkova, M., “Use of Magnetic Techniques for isolation of Cells,” J. of Chromatography B, vol. 722, pp. 33-53, 1999.
    65. Frenkel, D., and Smit, B., Understanding Molecular Simulation: From Algorithms to Applications, 1996.
    66. Dynal, Oslo, Norway, Biomagnetic Techniques in Molecular Biology, information booklet, 1995.
    67. Mallapragada, S., Biomaterials for Drug Delivery and Tissue Engineering, 2000.
    68. Berkovsky, B.S., Medvedev, V.F., Krakov, M.S., Magnetic Fluids: Engineering Applications, 1993.
    69. Leach, J.H., Magnetic Targeted Drug Delivery, 2003.
    70. Odenbach, S., Ferrofluids: Magnetically Controllable Fluids and Their Applications, 2002.
    71. 戴明鳳, “表面包敷生物活性劑之奈米磁性微粒子在醫學藥物傳輸和治療上的應用,”中華民國磁性技術協會,第三十二期, pp. 14-15.
    72. 王子賢, 李文乾, “生醫化學用途之奈米微粒,” 奈米製程專刊, 化工,第50卷第2期, pp. 44-53, 2003.
    73. 柳學全, 李紅云, 曹勇家, “粉末冶金會刊,第26卷,第三期,pp. 212-217, 2001.
    74. 陳啟明, “細胞膜的理論模型:複雜的二維曲面” 物理雙月刊, 第22卷, 第3期, pp. 325-333, 2000.
    75. 李學養, “磁性物理學,” 聯經出版事業公司, 1982.
    76. 呂輝宗,溫坤禮, “工程電磁學,” 高立圖書有限公司, 1997.
    77. 張有義, “膠體及介面化學入門, ” 高立圖書有限公司, 1997.
    78. 黃忠良, “磁性流體理論應用, ” 復漢出版社印行, 1988.
    79. 劉福田, “微粒導論,” 渤海堂文化公司印行, 1990.
    80. 劉昇鑫, “電變流體微觀結構與剪切特性研究,” 國立成功大學機械工程學系碩士論文, 2000.
    81. 吳昱偉, “固液介面吸附動力特性之工程建模,” 國立成功大學機械工程學系碩士論文, 2003.
    82. 鄭天倪, “奈米碳管儲氫理論之建構與優化,” 國立成功大學機械工程學系碩士論文, 2003.
    83. 陳酩堯, “磁性奈米微粒輔助基因轉染之研究,” 國立中正大學化學工程研究所, 2002.
    84. 游文淮, “以離散元素法模擬膠粒粒間作用與布朗運動之研究,” 國立臺灣大學土木工程學研究所, 2002.
    85. 王信順, “小分子在非定形高分子中擴散之分子模擬,” 國立成功大學化學學系, 1992.
    86. 陳善智, “具布朗運動行為的膠體在多孔性介質中吸附與輸送現象之探討,” 國立台灣大學化學工程研究所, 2003.
    87. 翁輝竹,“鐵磁流體在具軸向磁場之共軸旋轉圓柱中穩定性分析”國立成功大學機械工程學系, 2000.

    下載圖示 校內:2005-07-20公開
    校外:2005-07-20公開
    QR CODE