研究生: |
楊宗晟 Yang, Tsung-Cheng |
---|---|
論文名稱: |
植基於人工DNA蜂后基因演算法之模糊控制器設計 Fuzzy Controller Design by Artificial DNA Assisted Queen Bee Genetic Algorithm |
指導教授: |
李祖聖
Li, Tzuu-Hseng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 87 |
中文關鍵詞: | 人工DNA蜂后基因演算法 |
外文關鍵詞: | DNA+QBGA |
相關次數: | 點閱:65 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了一種人工DNA蜂后基因演算法(DNA+ QBGA)學習模糊控制器的增益,控制結構,歸屬函數和規則。蜂后輔助遺傳算法(QBGA)的演化過程擁有簡單,快速的程序去找出最佳參數,並採用DNA計算來決定模糊控制器的結構。每一個模糊控制的結構可以被定義成不同的蜂箱,其中包含的控制結構和增益的維度。本篇所提出的人工DNA蜂后基因演算法可以讓歸屬函數和規則庫,在不同的控制結構之間彼此溝通。此外,本文提出一種新型的三步驟的交配法,可以進行不同的奇數維度的歸屬函數之間的交配。第一步驟是父母代(女王蜂和雄蜂)和子代(幼蟲)的維度,透過他們的最小公倍數來擴展到相同的維度。第二步驟是在相對應的空間中隨機選擇父母代的基因。第三步驟子代基因是由他們的父母之間的實數編碼交叉計算取得。最後,將人工DNA蜂后基因演算法運用到模糊控制器之設計,並以倒單擺車和混沌系統之模擬結果展現所提模糊控制器之可行性和有效性。
This thesis proposes an artificial DNA assisted queen bee genetic algorithm (DNA+QBGA) to learn the gains, control structures, membership functions, and rules of the fuzzy controller. The queen bee genetic algorithm (QBGA) possesses simple and fast evolution process to figure out the best parameters and the DNA computing is adopted to determine the structure of fuzzy controller. Each fuzzy control structure can be defined by a different bee hive, which contains the control structure and dimension of the gain. The presented DNA+QBGA can make the membership functions and rules communicate with one another among different control structures. Moreover, a novel three-step crossover operation is investigated such that the crossover between different odd dimensions of membership functions can be made. Step one is that the dimensions of parents (queen and drone) and the offspring (brood) are expanded to the same dimension resolved by their least common multiple. Step two is to randomly select the genes from the parents in the corresponding space. Step three is that the offspring gene is calculated by the real-coded crossover between their parents. Finally, the simulation results of the fuzzy controlled cart-pole and chaotic systems demonstrate the feasibility and effectiveness of the proposed schemes.
[1] E. R. Sanchez, B. Montrucchio, L. M. Murillo, and M. Rebaudengo, "Adaptive Fuzzy-MAC for Power Reduction in Wireless Sensor Networks," in Proc. International Conference on New Technologies, Mobility and Security (NTMS), Paris, Feb. 2011, pp. 1-5.
[2] Z. Y. Zhang, D. X. Zhao, and B. Sun, "Study on Fuzzy Automatic Transmission Strategy of Vehicles," in Proc. IEEE Conference on Cybernetics and Intelligent Systems, Chengdu, Sept. 2008, pp. 1359-1363.
[3] M. N. Uddin and R. S. Rebeiro, "Online Efficiency Optimization of a Fuzzy-Logic-Controller-Based IPMSM Drive," IEEE Transactions on Industry Applications, vol. 47, no. 2, pp. 1043-1050, Dec. 2010.
[4] R. Riadi, R. Tawegoum, A. Rachid, and G. Chasseriaux, "Decentralized Temperature Fuzzy Logic Control of a Passive Air Conditioning Unit," in Proc. Mediterranean Conference on Control & Automation, Athens, Jul. 2007, pp. 1-6.
[5] D. Wang, X. J. Zeng, and J. A. Keane, "A Simplified Structure Evolving Method for Mamdani Fuzzy System Identification and Its Application to High-Dimensional Problems," Information Sciences, vol. 220, pp. 110-123, Jan. 2013.
[6] H. X. Li and H. B. Gatland, "Conventional Fuzzy Control and Its Enhancement," IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetic, vol. 26, no. 5, pp. 791-797, Oct. 1996.
[7] P. Pulkkinen and H. Koivisto, "A Dynamically Constrained Multiobjective Genetic Fuzzy System for Regression Problems," IEEE Transactions on Fuzzy Systems, vol. 18, no. 1, pp. 161-177, Feb. 2010.
[8] C.F. Juang and P. H. Chang, "Designing Fuzzy-Rule-Based Systems Using Continuous Ant-Colony Optimization," IEEE Transactions on Fuzzy Systems, vol. 18, no. 1, pp. 138-149, Feb. 2010.
[9] R. P. Prado, S. G. Galán, J. E. M. Expósito, and A. J. Yuste, "Knowledge Acquisition in Fuzzy-Rule-Based Systems with Particle-Swarm Optimization," IEEE Transactions on Fuzzy Systems, vol. 18, no. 6, pp. 1083-1097, Dec. 2010.
[10] C. Ozturk, D. Karaboga, and B. Gorkemli, "Probabilistic Dynamic Deployment of Wireless Sensor Networks by Artificial Bee Colony Algorithm," Sensors, vol. 11, no. 6, pp. 6056-6065, Apr. 2011.
[11] D. T. Pham, A. Ghanbarzadeh, S. Otri, and E. Koc, "Optimal Design of Mechanical Components Using the Bees Algorithm," Proc. IMechE Vol. 223 Part C: J. Mechanical Engineering Science, vol. 223, no. 5, pp. 1051-1056, May. 2009.
[12] A. Ghasemi, "A Fuzzified Multi Objective Interactive Honey Bee Mating Optimization for Environmental/Economic Power Dispatch with Valve Point Effect," Electrical Power and Energy Systems, vol. 49, pp. 308-321, Jan. 2013.
[13] K. Sundareswaran and V. T. Sreedevi, "Boost Converter Controller Design Using Queen-Bee-Assisted GA," IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 778-783, Mar. 2009.
[14] LM. Adleman, "Molecular Computation of Solutions to Combinatorial Problems," Science, vol. 266, no. 5187, pp. 1021-1024, Nov. 1994.
[15] K. Dai and N. Wang, "A Hybrid DNA Based Genetic Algorithm for Parameter Estimation of Dynamic Systems," Chemical Engineering Research and Design, vol. 90, no. 12, pp. 2235-2246, Dec. 2012.
[16] C. T. Wu, J. P. Tien, and T.-H. S. Li, "Integration of DNA and Real Coded GA for the Design of PID-like Fuzzy Controllers," in Proc. IEEE International Conference on Systems, Man, and Cybernetics, COEX, Seoul, Korea, Oct. Oct. 2012, pp. 2809-2814.
[17] [Online]. https://genographic.nationalgeographic.com/science-behind/genetics-overview/
[18] R. Dahm, "Friedrich Miescher and the Discovery of DNA," Developmental Biology, vol. 278, no. 2, pp. 274-288, Feb. 2005.
[19] [Online]. http://www.nature.com/scitable/topicpage/developing-the-chromosome-theory-164
[20] [Online]. http://www.rsc.org/chemistryworld/Issues/2003/April/story.asp
[21] [Online]. http://www.accessexcellence.org/RC/AB/BC/Experiments_that_Inspire.php
[22] M. Bansal, "DNA structure: Revisiting the Watson-Crick Double Helix," Current Science, vol. 85, no. 11, pp. 1556-1563, Dec. 2003.
[23] R. E. Franklin and R. G. Gosling, "Molecular Configuration in Sodium Thymonucleate," Nature, vol. 171, no. 4356, pp. 740 - 741, Apr. 1953.
[24] [Online]. http://ghr.nlm.nih.gov/handbook/basics/dna
[25] "The New Genetics," NIH Publication, vol. 07-662, Oct. 2006.
[26] [Online]. http://www.ornl.gov/sci/techresources/Human_Genome/posters/chromosome/gencode.shtml
[27] [Online]. http://www.kshitij-school.com/Study-Material/Class-12/Biology/Biotechnology/Tools-of-recombinant-dna-technology/Restriction-enzymes.aspx
[28] [Online]. http://www.influenzareport.com/ir/pathogen.htm
[29] C. S. Chen and J. H. Yang, "Applying DNA Computation to Intractable Problems in Social Network Analysis," Biosystems, vol. 101, no. 3, pp. 222-232, Sept. 2010.
[30] L. H. Ren, Y. S. Ding, H. Ying, and S. H. Shao, "Emergence of Self-Learning Fuzzy Systems by a New Virus DNA-Based Evolutionary Algorithm," International Journal of Intelligent Systems, vol. 18, no. 3, pp. 339-354, Mar. 2003.
[31] C. W. Yeh, "Solving Capacitated Vehicle Routing Problem Using DNA-based Computation," in Proc. International Conference on Information Management and Engineering, Kao Yuan Univ., Kaohsiung, Apr. 2009, pp. 170-174.
[32] H. D. Richardson, The Hive and the Honey-Bee., 1847.
[33] [Online]. http://www.britannica.com/media/full/108346
[34] D. C. Gilley and D. R. Tarpy, "Three Mechanisms of Queen Elimination in Swarming Honey Bee Colonies," Apidologie, vol. 36, no. 3, pp. 461-474, Jul. 2005.
[35] F. Hoffmann, "Evolutionary Algorithms for Fuzzy Control System Design," Proceedings of the IEEE, vol. 89, no. 9, pp. 1318-1333, Sep. 2001.
[36] B. Dimitrijevic, D. Teodorovic, V. Simic, and M. Selmic, "Bee Colony Optimization Approach to Solving the Anticovering Location Problem," Journal of Computing in Civil Engineering, vol. 26, no. 6, pp. 759-768, Nov. 2012.
[37] T. H. S Li and M. Y. Shieh, "Switching-Type Fuzzy Sliding Mode Control of a Cart-Pole System," Mechatronics, vol. 10, no. 1-2, pp. 91-109, Feb. 2000.
[38] J. J. Yan, "Design of Robust Controllers for Uncertain Chaotic Systems with Nonlinear Inputs," Chaos, Solitons & Fractals, vol. 19, no. 3, pp. 541-547, Feb. 2004.
[39] S. M. Guo, L. S. Shieh, G. R. Chen, and C. F. Lin, "Effective Chaotic Orbit Tracker: A Prediction-Based Digital Redesign Approach," IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, Nov. 2000.
[40] T. H. S. Li, M. Y. Hsiao, J. Z. Lee, and S. H. Tsai, "Controlling a Time-Varying Unified Chaotic System via Interval Type 2 Fuzzy Sliding-Mode Technique," International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 2, pp. 171-180, Feb. 2009.