| 研究生: |
方宥昇 Fang, Yu-Sheng |
|---|---|
| 論文名稱: |
建置憂鬱症之基因資料庫:結合基因優先化系統與多面向資料 A genes database for depression combining multidimensional data resources with gene prioritization system |
| 指導教授: |
郭柏秀
Kuo, Po-Hsiu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊研究所 Institute of Bioinformatics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 憂鬱症 、候選基因 、基因排序 、優先化 |
| 外文關鍵詞: | depression, candidate gene, gene ranking, prioritization |
| 相關次數: | 點閱:82 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
重鬱症為一種複雜性的病徵,是由遺傳因子與非遺傳因子兩者相互交叉作用所產生的疾病。截至目前為止,有許多資料庫與研究收集了非常大量的憂鬱症相關研究資料與結果,譬如遺傳相關性研究、連鎖分析以及基因表現型態分析等。這提供我們一個契機,設計一套優先化系統去結合不同面向的資料,整合歸納不同來源的候選基因,藉此建置一個依相關證據強弱排序的憂鬱症基因資料庫。首先,我們從五種來源去收集憂鬱症相關候選基因,分別是遺傳相關性研究、連鎖分析、基因表現型態、基因調控網路與文獻搜尋這五種平台,并包含人類以及動物模型研究。這些基因先初步依據其所屬來源種類給予分數。接著,我們使用一套兩階段的篩選系統去尋找其最理想的加權矩陣值,然後採用此加權矩陣去計算加總每個基因的總分數,最後所有的候選基因依據其分數大小進行排序。我們將這組優先化基因,利用全基因體掃瞄相關研究的數據,以及觀察其在人類組織中的表現情形,去評估經由這套系統優化過的高排名候選基因是否合理。結果顯示此套優先化系統是相當可行的。我們可以進一步研究這組優先化基因在人體或是動物實驗的再現性結果。
Major depressive disorder (MDD) is a complex and multifactorial trait with the interplay between genetic and nongenetic risk factors. So far, there have been many datasets and individual studies with massive information from multiple resources of genetic findings, including results in association studies, linkage scans, and gene expression studies for depression. This provides us an opportunity to conduct a prioritization system to utilize and combine multidimensional data to create an evidence-based gene set for depression. First, we collect susceptible genes for depression from five platforms: association study, linkage scan, gene expression, regulatory pathway, and literature search. Data resources included studies in both human and animal model. These genes are initially assigned scores by category-specific scoring method. Then, we use a two step approach to find an optimal weight matrix. Finally, susceptible genes are prioritized by their combined scores using the optimal weight matrix. We evaluate prioritized genes by an independent genome-wide association study and gene expression pattern in human tissues. Our results revealed that prioritized genes generated by such approach are promising for further biological experiment or replication.
Adie, E.A., Adams, R.R., Evans, K.L., Porteous, D.J., and Pickard, B.S. (2006). SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics 22, 773-774.
Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F., Tranchevent, L.-C., De Moor, B., Marynen, P., Hassan, B., et al. (2006). Gene prioritization through genomic data fusion. Nat Biotech 24, 537-544.
Belmaker, R.H., and Agam, G. (2008). Major depressive disorder. N Engl J Med 358, 55-68.
Berton, O., and Nestler, E.J. (2006). New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7, 137-151.
Bittel, D.C., Kibiryeva, N., McNulty, S.G., Driscoll, D.J., Butler, M.G., and White, R.A. (2007). Whole genome microarray analysis of gene expression in an imprinting center deletion mouse model of Prader-Willi syndrome. Am J Med Genet A 143, 422-429.
Cryan, J.F., Markou, A., and Lucki, I. (2002). Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23, 238-245.
El Yacoubi, M., and Vaugeois, J.M. (2007). Genetic rodent models of depression. Curr Opin Pharmacol 7, 3-7.
Higgs, B.W., Elashoff, M., Richman, S., and Barci, B. (2006). An online database for brain disease research. BMC Genomics 7, 70.
Jia, P., Sun, J., Guo, A.Y., and Zhao, Z. (2010). SZGR: a comprehensive schizophrenia gene resource. Mol Psychiatry 15, 453-462.
Jurata, L.W., Gallagher, P., Lemire, A.L., Charles, V., Brockman, J.A., Illingworth, E.L., and Altar, C.A. (2006). Altered expression of hippocampal dentate granule neuron genes in a mouse model of human 22q11 deletion syndrome. Schizophr Res 88, 251-259.
Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27-30.
Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., and Hirakawa, M. (2010). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38, D355-360.
Kato, M., and Serretti, A. (2008). Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry.
Kato, T. (2007). Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci 61, 3-19.
Kessler, R.C., Berglund, P., Demler, O., Jin, R., Merikangas, K.R., and Walters, E.E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62, 593-602.
Krishnan, V., and Nestler, E.J. (2008). The molecular neurobiology of depression. Nature 455, 894-902.
Lambert, G., Johansson, M., Agren, H., and Friberg, P. (2000). Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders. Arch Gen Psychiatry 57, 787-793.
Levinson, D.F. (2006). The genetics of depression: a review. Biol Psychiatry 60, 84-92.
Lohmueller, K.E., Pearce, C.L., Pike, M., Lander, E.S., and Hirschhorn, J.N. (2003). Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33, 177-182.
Lopez-Leon, S., Janssens, A.C., Gonzalez-Zuloeta Ladd, A.M., Del-Favero, J., Claes, S.J., Oostra, B.A., and van Duijn, C.M. (2008). Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry 13, 772-785.
Ma, X., Lee, H., Wang, L., and Sun, F. (2007). CGI: a new approach for prioritizing genes by combining gene expression and protein-protein interaction data. Bioinformatics 23, 215-221.
MacMaster, F.P., Russell, A., Mirza, Y., Keshavan, M.S., Taormina, S.P., Bhandari, R., Boyd, C., Lynch, M., Rose, M., Ivey, J., et al. (2006). Pituitary volume in treatment-naive pediatric major depressive disorder. Biol Psychiatry 60, 862-866.
Manolio, T.A., Rodriguez, L.L., Brooks, L., Abecasis, G., Ballinger, D., Daly, M., Donnelly, P., Faraone, S.V., Frazer, K., Gabriel, S., et al. (2007). New models of collaboration in genome-wide association studies: the Genetic Association Information Network. Nat Genet 39, 1045-1051.
Merali, Z., Du, L., Hrdina, P., Palkovits, M., Faludi, G., Poulter, M.O., and Anisman, H. (2004). Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region. J Neurosci 24, 1478-1485.
Meyer, J.H., Ginovart, N., Boovariwala, A., Sagrati, S., Hussey, D., Garcia, A., Young, T., Praschak-Rieder, N., Wilson, A.A., and Houle, S. (2006). Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63, 1209-1216.
Modabernia, M.J., Tehrani, H.S., Fallahi, M., Shirazi, M., and Modabbernia, A.H. (2008). Prevalence of depressive disorders in Rasht, Iran: A community based study. Clin Pract Epidemiol Ment Health 4, 20.
Moussavi, S., Chatterji, S., Verdes, E., Tandon, A., Patel, V., and Ustun, B. (2007). Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 370, 851-858.
Muglia, P., Tozzi, F., Galwey, N.W., Francks, C., Upmanyu, R., Kong, X.Q., Antoniades, A., Domenici, E., Perry, J., Rothen, S., et al. (2010). Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Mol Psychiatry 15, 589-601.
Pezawas, L., Meyer-Lindenberg, A., Drabant, E.M., Verchinski, B.A., Munoz, K.E., Kolachana, B.S., Egan, M.F., Mattay, V.S., Hariri, A.R., and Weinberger, D.R. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 8, 828-834.
Pincus, H.A., and Pettit, A.R. (2001). The societal costs of chronic major depression. J Clin Psychiatry 62 Suppl 6, 5-9.
Pittenger, C., and Duman, R.S. (2008). Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33, 88-109.
Rebhan, M., Chalifa-Caspi, V., Prilusky, J., and Lancet, D. (1998). GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics 14, 656-664.
Roberts, P.M. (2006). Mining literature for systems biology. Brief Bioinform 7, 399-406.
Saccone, S.F., Saccone, N.L., Swan, G.E., Madden, P.A., Goate, A.M., Rice, J.P., and Bierut, L.J. (2008). Systematic biological prioritization after a genome-wide association study: an application to nicotine dependence. Bioinformatics 24, 1805-1811.
Shi, J., Potash, J.B., Knowles, J.A., Weissman, M.M., Coryell, W., Scheftner, W.A., Lawson, W.B., Depaulo, J.R., Jr., Gejman, P.V., Sanders, A.R., et al. (2010). Genome-wide association study of recurrent early-onset major depressive disorder. Mol Psychiatry.
Shyn, S.I., and Hamilton, S.P. (2010). The genetics of major depression: moving beyond the monoamine hypothesis. Psychiatr Clin North Am 33, 125-140.
Shyn, S.I., Shi, J., Kraft, J.B., Potash, J.B., Knowles, J.A., Weissman, M.M., Garriock, H.A., Yokoyama, J.S., McGrath, P.J., Peters, E.J., et al. (2009). Novel loci for major depression identified by genome-wide association study of Sequenced Treatment Alternatives to Relieve Depression and meta-analysis of three studies. Mol Psychiatry.
Strausberg, R.L. (2001). The Cancer Genome Anatomy Project: new resources for reading the molecular signatures of cancer. J Pathol 195, 31-40.
Sullivan, P.F., de Geus, E.J., Willemsen, G., James, M.R., Smit, J.H., Zandbelt, T., Arolt, V., Baune, B.T., Blackwood, D., Cichon, S., et al. (2009). Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry 14, 359-375.
Sullivan, P.F., Neale, M.C., and Kendler, K.S. (2000). Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 157, 1552-1562.
Sun, J., Jia, P., Fanous, A.H., Webb, B.T., van den Oord, E.J., Chen, X., Bukszar, J., Kendler, K.S., and Zhao, Z. (2009). A multi-dimensional evidence-based candidate gene prioritization approach for complex diseases-schizophrenia as a case. Bioinformatics 25, 2595-6602.
Weissman, M.M., Bland, R., Joyce, P.R., Newman, S., Wells, J.E., and Wittchen, H.U. (1993). Sex differences in rates of depression: cross-national perspectives. J Affect Disord 29, 77-84.
Yu, W., Clyne, M., Khoury, M.J., and Gwinn, M. (2010). Phenopedia and Genopedia: disease-centered and gene-centered views of the evolving knowledge of human genetic associations. Bioinformatics 26, 145-146.
Zhang, B., Kirov, S., and Snoddy, J. (2005). WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33, W741-748.