簡易檢索 / 詳目顯示

研究生: 莊永丞
Chuang, Yung-Cheng
論文名稱: 探討不同接著劑比例及切口角度之複材單搭接頭漸進式破壞分析及強度預測
Investigation of progressive failure analysis and strength prediction in composite single lap joints with different adhesives and notches
指導教授: 梁育瑞
Liang, Yu-Jui
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 79
中文關鍵詞: 複合材料單搭接頭單軸向拉伸三點彎矩Abaqus內聚力模型
外文關鍵詞: composite materials, Single lap joint, Uniaxial stretch, three point bending, Abaqus, Cohesive Zone Model
相關次數: 點閱:45下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著時代的進步,研究人員對複合材料有了更深入的了解和應用,傳統的複合材料接著方式使用鉚釘做結合,然而鉚釘會破壞複合材料,以及容易產生應力集中的問題,因此使用接著劑結合變成良好的替代方案。過去研究中,探討使用不同接著劑進行結合,產生減少應力集中之結果;對金屬做開槽及導角、對複材進行導角,惟尚未有探討「使用不同的接著劑比例及複合材料導角」進行之研究,故本研究欲探討使用單搭接頭進行單軸向拉伸及三點彎矩進行模擬,並且使用Abaqus中內建的漸進式損傷建模技術「內聚力模型Cohesive Zone Model(CZM) 」,用於預測承受拉伸載荷的單搭接接頭的漸進式破壞分析及結構強度預測,黏著區使用Cohesive Zone Element非零厚度內聚元素建模黏合層,模擬脆性接著劑使用脆性及延性接著劑,複合材料使用2D平面應變單元,接著劑使用Cohesive進行模擬。在單軸向的拉伸模擬中,研究結果顯示在複合材料進行導角,以及同時使用不同的接著劑比例之後,能夠有效減少應力集中的問題,並且提升材料最大失效負載19.3%,在三點彎矩模擬中,同時使用不同的接著劑比例以及導角,同樣有助於減少應力集中,並且使材料能夠有更大的變形量,以及提升材料最大失效負載67.1%。

    With the advancement of technology, researchers have gained a deeper understanding and application of composite materials. Traditional methods of joining composite materials use rivets, which can damage the composites and create stress concentration issues. Therefore, using adhesives has become a good alternative. Previous studies have explored the use of different adhesives to reduce stress concentration; they examined grooving and chamfering metal, and chamfering composites. However, no research has yet investigated "the use of different adhesive ratios and chamfering of composite materials." This study aims to explore the use of single lap joints for uniaxial tensile and three-point bending simulations, utilizing the built-in progressive damage modeling technique in Abaqus, the "Cohesive Zone Model (CZM)," to predict the progressive failure analysis and structural strength of single lap joints under tensile load. The adhesive area is modeled using the Cohesive Zone Element with non-zero thickness cohesive elements, simulating brittle and ductile adhesives. Composite materials are simulated using 2D plane strain elements, and adhesives are simulated using Cohesive elements. In the uniaxial tensile simulation, the results show that after chamfering the composite materials and using different adhesive ratios, the issue of stress concentration is effectively reduced, and the maximum failure load of the material is increased by 19.3%. In the three-point bending simulation, using different adhesive ratios and chamfering also helps reduce stress concentration, allowing for greater material deformation and increasing the maximum failure load by 67.1%.

    摘要 i Abstract ii 致謝詞 vii 目錄 viii 圖目錄 xi 表目錄 xiii 圖表目錄 xiv 第一章 緒論 1 1.1 研究背景與文獻回顧 1 1.1.1 複合材料 1 1.1.2 單搭膠接接頭 2 1.1.3 優化設計 4 1.1.4 複材疊層結構之損傷分析 7 1.2 研究動機 8 1.3研究目標與流程 9 1.3.1研究目標 9 1.3.2研究流程 10 第二章 研究方法 11 2.1 複合材料力學 11 2.1.1異向性材料 11 2.1.2正交各向異性材料 11 2.1.3橫向各向同性材料 12 2.1.4均質材料 13 2.2 漸進式損傷模型 14 2.2.1 內聚力模型CZM 14 第三章 數值模型 17 3.1複合材料單搭接接頭有限元素模型 17 3.1.1基本假設 17 3.2複合材料單搭接接頭與接著劑材料參數 18 3.3 Abaqus 中的內聚元素 18 3.4 邊界條件 19 3.5 網格尺寸 21 3.6 模型幾何 23 3.6.1更改接著劑與導角幾何模型 26 第四章 數值分析結果與討論 30 4.1拉伸數值有效性與極限負載 30 4.1.1不同接著劑 31 4.1.2不同角度導角 34 4.1.3同時更改接著劑與導角 37 4.2彎矩數值有效性與極限負載 42 4.2.1不同接著劑 42 4.2.2不同導角角度 44 4.2.3同時更改接著劑與導角 46 4.3實驗 50 4.3.1實驗模型 50 4.3.2實驗結果 53 第五章 結論與未來展望 57 5.1結論 57 5.2未來展望 58 第六章 參考文獻 59

    1. Serifi, V., et al., HISTORICAL DEVELOPMENT OF COMPOSITE MATERIALS. The Annals of the University of Oradea. Economic Sciences, 2018. Vol. XXVII (XVII).
    2. WHAT IS A COMPOSITE MATERIAL? ; Available from: https://www.twi-global.com/technical-knowledge/faqs/what-is-a-composite-material.
    3. Bai, R., et al., Finite element inversion method for interfacial stress analysis of composite single-lap adhesively bonded joint based on full-field deformation. International Journal of Adhesion and Adhesives, 2018. 81: p. 48-55.
    4. Budhe, S., et al., An updated review of adhesively bonded joints in composite materials. International Journal of Adhesion and Adhesives, 2017. 72: p. 30-42.
    5. Bachmann, J., C. Hidalgo, and S. Bricout, Environmental analysis of innovative sustainable composites with potential use in aviation sector—A life cycle assessment review. Science China Technological Sciences, 2017. 60(9): p. 1301-1317.
    6. Ramezani, F., et al., Developments in laminate modification of adhesively bonded composite joints. Materials, 2023. 16(2): p. 568.
    7. Hu, X.F., et al., Progressive failure of bolted single-lap joints of woven fibre-reinforced composites. Composite Structures, 2018. 189: p. 443-454.
    8. Neto, J., R.D. Campilho, and L. Da Silva, Parametric study of adhesive joints with composites. International Journal of Adhesion and Adhesives, 2012. 37: p. 96-101.
    9. Allman, D., A theory for elastic stresses in adhesive bonded lap joints. The Quarterly journal of mechanics and applied mathematics, 1977. 30(4): p. 415-436.
    10. Goland, M. and E. Reissner, The stresses in cemented joints. 1944.
    11. Zeng, Q.-G. and C. Sun, Novel design of a bonded lap joint. AIAA journal, 2001. 39(10): p. 1991-1996.
    12. F M da Silva, L. and R. D Adams, Techniques to reduce the peel stresses in adhesive joints with composites. International Journal of Adhesion and Adhesives, 2007. 27(3): p. 227-235.
    13. Gunnion, A.J. and I. Herszberg, Parametric study of scarf joints in composite structures. Composite Structures, 2006. 75(1): p. 364-376.
    14. Kupski, J. and S. Teixeira de Freitas, Design of adhesively bonded lap joints with laminated CFRP adherends: Review, challenges and new opportunities for aerospace structures. Composite Structures, 2021. 268: p. 113923.
    15. Kupski, J., et al., On the influence of overlap topology on the tensile strength of composite bonded joints: Single overlap versus overlap stacking. International Journal of Adhesion and Adhesives, 2020. 103: p. 102696.
    16. Geier, N., J.P. Davim, and T. Szalay, Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review. Composites Part A: Applied Science and Manufacturing, 2019. 125: p. 105552.
    17. Li, S., et al., Effects of adherend notching on the bonding performance of composite single-lap joints. Engineering Fracture Mechanics, 2023. 281: p. 109141.
    18. Moya-Sanz, E.M., I. Ivañez, and S.K. Garcia-Castillo, Effect of the geometry in the strength of single-lap adhesive joints of composite laminates under uniaxial tensile load. International Journal of Adhesion and Adhesives, 2017. 72: p. 23-29.
    19. Demir, T.N., A.N. Yuksel Yilmaz, and A. Celik Bedeloglu, Investigation of mechanical properties of aluminum–glass fiber-reinforced polyester composite joints bonded with structural epoxy adhesives reinforced with silicon dioxide and graphene oxide particles. International Journal of Adhesion and Adhesives, 2023. 126: p. 103481.
    20. Pires, I., et al., Performance of bi-adhesive bonded aluminium lap joints. International Journal of Adhesion and Adhesives, 2003. 23(3): p. 215-223.
    21. Roundi, W., et al., Experimental and numerical investigation of the effects of stacking sequence and stress ratio on fatigue damage of glass/epoxy composites. Composites Part B: Engineering, 2017. 109: p. 64-71.
    22. Kupski, J., D. Zarouchas, and S. Teixeira de Freitas, Thin-plies in adhesively bonded carbon fiber reinforced polymers. Composites Part B: Engineering, 2020. 184: p. 107627.
    23. Bisagni, C., D. Furfari, and M. Pacchione, Experimental investigation of reinforced bonded joints for composite laminates. Journal of Composite Materials, 2017. 52(4): p. 431-447.
    24. Lang, T.P. and P. Mallick, Effect of spew geometry on stresses in single lap adhesive joints. International Journal of Adhesion and adhesives, 1998. 18(3): p. 167-177.
    25. da Silva, L.F.M., et al., Analytical models of adhesively bonded joints—Part I: Literature survey. International Journal of Adhesion and Adhesives, 2009. 29(3): p. 319-330.
    26. da Silva, L.F.M., et al., Analytical models of adhesively bonded joints—Part II: Comparative study. International Journal of Adhesion and Adhesives, 2009. 29(3): p. 331-341.
    27. Icardi, U. and F. Sola, Analysis of bonded joints with laminated adherends by a variable kinematics layerwise model. International Journal of Adhesion and Adhesives, 2014. 50: p. 244-254.
    28. Wang, J. and C. Zhang, Three-parameter, elastic foundation model for analysis of adhesively bonded joints. International Journal of Adhesion and Adhesives, 2009. 29(5): p. 495-502.
    29. Yousefsani, S.A. and M. Tahani, Analytical solutions for adhesively bonded composite single-lap joints under mechanical loadings using full layerwise theory. International Journal of Adhesion and Adhesives, 2013. 43: p. 32-41.
    30. Anyfantis, K.N. and N.G. Tsouvalis, A 3D ductile constitutive mixed-mode model of cohesive elements for the finite element analysis of adhesive joints. Journal of Adhesion Science and Technology, 2013. 27(10): p. 1146-1178.
    31. Harris, J.A. and R.A. Adams, Strength prediction of bonded single lap joints by non-linear finite element methods. International Journal of Adhesion and Adhesives, 1984. 4(2): p. 65-78.
    32. Liu, P., et al., Numerical analysis of bearing failure in countersunk composite joints using 3D explicit simulation method. Composite Structures, 2016. 138: p. 30-39.
    33. Luo, H., et al., Progressive failure and experimental study of adhesively bonded composite single-lap joints subjected to axial tensile loads. Journal of Adhesion Science and Technology, 2016. 30(8): p. 894-914.
    34. Pickett, A.K. and L. Hollaway, The analysis of elastic-plastic adhesive stress in bonded lap joints in FRP structures. Composite Structures, 1985. 4(2): p. 135-160.
    35. Sadeghi, M.Z., et al., Failure load prediction of adhesively bonded single lap joints by using various FEM techniques. International Journal of Adhesion and Adhesives, 2020. 97: p. 102493.
    36. Ramalho, L.D.C., et al., Static strength prediction of adhesive joints: A review. International Journal of Adhesion and Adhesives, 2020. 96: p. 102451.
    37. He, X., A review of finite element analysis of adhesively bonded joints. International Journal of Adhesion and Adhesives, 2011. 31(4): p. 248-264.
    38. Nagaraj, M.H., et al., Progressive damage analysis of composite structures using higher-order layer-wise elements. Composites Part B: Engineering, 2020. 190: p. 107921.
    39. Adluru, H.K., et al., Delamination initiation and migration modeling in clamped tapered laminated beam specimens under static loading. Composites Part A: Applied Science and Manufacturing, 2019. 118: p. 202-212.
    40. Maimí, P., et al., A continuum damage model for composite laminates: Part I – Constitutive model. Mechanics of Materials, 2007. 39(10): p. 897-908.
    41. Maimí, P., et al., A continuum damage model for composite laminates: Part II – Computational implementation and validation. Mechanics of Materials, 2007. 39(10): p. 909-919.
    42. Liang, Y.-J., J.S. McQuien, and E.V. Iarve, Implementation of the regularized extended finite element method in Abaqus framework for fracture modeling in laminated composites. Engineering Fracture Mechanics, 2020. 230: p. 106989.
    43. Liang, Y.-J., C.G. Dávila, and E.V. Iarve, A reduced-input cohesive zone model with regularized extended finite element method for fatigue analysis of laminated composites in Abaqus. Composite Structures, 2021. 275: p. 114494.
    44. Barenblatt, G.I., The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, in Advances in Applied Mechanics, H.L. Dryden, et al., Editors. 1962, Elsevier. p. 55-129.
    45. Dugdale, D.S., Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 1960. 8(2): p. 100-104.
    46. Camacho, G.T. and M. Ortiz, Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures, 1996. 33(20): p. 2899-2938.
    47. Needleman, A., An analysis of decohesion along an imperfect interface. International Journal of Fracture, 1990. 42(1): p. 21-40.
    48. Needleman, A., A continuum model for void nucleation by inclusion debonding. 1987.
    49. Tvergaard, V. and J.W. Hutchinson, The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 1992. 40(6): p. 1377-1397.
    50. Campilho, R.D.S.G., et al., Strength prediction of single- and double-lap joints by standard and extended finite element modelling. International Journal of Adhesion and Adhesives, 2011. 31(5): p. 363-372.
    51. Kaiser, I., C. Tan, and K.T. Tan, Bio-inspired patterned adhesive single-lap joints for CFRP and titanium. Composites Part B: Engineering, 2021. 224: p. 109182.
    52. Jokinen, J. and M. Kanerva, Simulation of Delamination Growth at CFRP-Tungsten Aerospace Laminates Using VCCT and CZM Modelling Techniques. Applied Composite Materials, 2019. 26(3): p. 709-721.
    53. Jokinen, J., M. Wallin, and O. Saarela, Applicability of VCCT in mode I loading of yielding adhesively bonded joints—a case study. International Journal of Adhesion and Adhesives, 2015. 62: p. 85-91.
    54. Eder, M.A. and R. Bitsche, Fracture analysis of adhesive joints in wind turbine blades. Wind Energy, 2015. 18(6): p. 1007-1022.
    55. Shokrieh, M.M., et al., Simulation of mode I delamination propagation in multidirectional composites with R-curve effects using VCCT method. Computational Materials Science, 2012. 65: p. 66-73.
    56. Teixeira de Freitas, S. and J. Sinke, Failure analysis of adhesively-bonded skin-to-stiffener joints: Metal–metal vs. composite–metal. Engineering Failure Analysis, 2015. 56: p. 2-13.
    57. Thirunavukarasu, A. and R.S. Sikarwar, Enhancing the strength of adhesively bonded single-lap composite joints using fiber fabrics. Materials Letters, 2024. 357: p. 135664.
    58. Sancaktar, E. and P. Nirantar, Increasing strength of single lap joints of metal adherends by taper minimization. Journal of Adhesion Science and Technology, 2003. 17(5): p. 655-675.
    59. Simulia, D.S., Abaqus 6.12 documentation. Providence, Rhode Island, US, 2012. 261.
    60. Krueger, R., Virtual crack closure technique: History, approach, and applications. Appl. Mech. Rev., 2004. 57(2): p. 109-143.
    61. Krueger, R., The virtual crack closure technique for modeling interlaminar failure and delamination in advanced composite materials, in Numerical modelling of failure in advanced composite materials. 2015, Elsevier. p. 3-53.
    62. Campilho, R.D.S.G., et al., Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. International Journal of Adhesion and Adhesives, 2013. 44: p. 48-56.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE