| 研究生: |
張瀞文 Chang, Cheng-Wen |
|---|---|
| 論文名稱: |
姬蝴蝶蘭乙烯受器基因PeERS cDNA之選殖與特性分析 Molecular cloning and analysis of a cDNA coding for ethylene receptor PeERS from Phalaenopsis equestris |
| 指導教授: |
吳文鑾
Wu, Wen-Luan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物學系 Department of Biology |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 乙烯受器 、蝴蝶蘭 |
| 外文關鍵詞: | Phalaenopsis, ethylene receptor |
| 相關次數: | 點閱:123 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乙烯(C2H4)為氣體形式作用的植物荷爾蒙,參與許多植物的生長發育與生物、非生物逆境反應。乙烯和乙烯受器結合後之訊息藉由MAPK 途徑進行傳遞,乙烯受器為訊息進入細胞的最上游。典型的乙烯受器由3個功能區組成:乙烯結合區、組胺酸激酶功能區及接收功能區。乙烯受器具有2種型式:ETR型態之乙烯受器具有C端之接收功能區,ERS型態則無。蝴蝶蘭為重要經濟花卉之一,台灣原生種姬蝴蝶蘭(Phalaenopsis equestris)為紅花重要親本之一,研究乙烯之訊息傳遞相關分子將有助於產業應用。本實驗以乙烯受器基因為研究對象,進行姬蝴蝶蘭乙烯受器基因之選殖與特性分析。首先由基因資料庫中其它植物物種之乙烯受器保留性區域設計簡併性引子(degenerate primer),擴增姬蝴蝶蘭乙烯受器基因片段並選殖定序,由基因片段進行5´-及3´-RACE得到完整之姬蝴蝶蘭乙烯受器基因全長,命名為PeERS,登錄序號為AJ563284。PeERS基因全長共有2,025 bp,譯碼區有1,092 bp,轉譯出633個胺基酸,推測其分子量為71 kDa,等電點為6.61。比對分析胺基酸序列後,發現PeERS具有3個穿膜區及組胺酸激酶保守區,並不具有C端訊息接收區,因此其屬於ERS型態之乙烯受器。PeERS胺基酸序列在第4、6個胺基酸具有保守之cysteine,為乙烯受器形成二聚體相關之重要胺基酸。利用南方墨點法分析姬蝴蝶蘭乙烯受器基因族系之組成,以PeERS基因譯碼區為探針,至少出現2個雜合反應條帶,推測姬蝴蝶蘭基因組具有2個乙烯受器基因族系成員;以近3´非譯碼區為探針,僅出現1個雜合反應條帶,因此推測PeERS為單一拷貝基因。利用北方墨點法分析PeERS基因表現,顯示PeERS在根、葉及花均有表現,但在老葉的表現量最高,幼苗的表現量最低,因此PeERS可能與器官之老化相關。將姬蝴蝶蘭去花粉蓋1天,發現PeERS並未因為去花粉蓋而表現量增加,顯示PeERS基因表現並不會受到內生性乙烯增加所誘導,推測姬蝴蝶蘭去雄凋萎是PeERS經由後轉錄作用進行調控。利用聚類分析法構築不同物種之乙烯受器基因演化樹,顯示PeERS位於單子葉植物分類枝上。親源演化樹在一開始分做兩群,兩群均含有單子葉及雙子葉植物,推測乙烯受器基因的分歧是在單雙子葉分化之前。再以轉基因植物檢測PeERS基因功能,利用花椰菜鑲嵌病毒35S啟動子持續表現姬蝴蝶蘭PeERS基因,轉殖到野生型及乙烯不敏感突變株(etr1-1)阿拉伯芥,T2世代轉殖植株並未呈現明顯三相反應表型,推測轉殖PeERS基因並未在阿拉伯芥內表現功能,原因需進一步探討。
Ethylene is a gaseous phytohormone, which regulates many aspects of plant growth and development as well as in response to biotic and abiotic stresses. Ethylene/receptor binding leads to a plant response through the ethylene MAPK signal transduction pathway. Therefore, ethylene receptor is the early element of this pathway. Typical ethylene receptor protein exists as a membrane-associated dimer and has three domains: amino-terminal ethylene binding domain, histidine kinase domain and receiver domain. Two classes of ethylene receptors, ETR- and ERS-type, the latter is devoid of receiver domain. Phalaenopsis orchid is one of the most commercially important floral crops in Taiwan. Phalaenopsis equestris, a wild species orchid, native to Taiwan and widely used as parental strains for breeding red flower orchid cultivars. Studying of ethylene signaling molecules in orchids may provide useful information for floriculture industry applications. Therefore, the objectives of this study were cloning and analysis of a cDNA coding for ethylene receptor from Phalaenopsis equestris. Firstly, the degenerate primers on the basis of ethylene receptor conserved domain from different plant species were designed. The cDNA encoding a ethylene receptor of Phalaenopsis equestris was obtained by a combination of RT-PCR and 5´-/3´-RACE cloning. This Phalaenopsis equestris ethylene receptor was named as PeERS (Accession No. AJ563284). The cloned cDNA is 2,025 nucleotides long and the deduced amino acid sequence comprised 633 amino acid residuces with a caculated molecular mass of 71 kDa, isoelectric point (pI) of 6.61. The amino acid sequence of PeERS contained all the conserved residues of the two domains, a transmembrane domain and a conserved histidine kinase domain, but lacked a receiver domain. Thus, PeERS belongs to an ERS-type. Two cysteine residues that are required for dimerization are also found in PeERS receptor at position 4 and 6. Southern blotting of genomic DNA with PeERS coding region suggested that there were at least two members in Phalaenopsis equestris ethylene receptor gene family. Using 3´UTR as probe showed that PeERS was a single-copy gene. Northern analysis showed that PeERS was expressed in all organs examined, i.e. root, leaf and flower. High relative amounts were detected in the old leaf in comparison with the seedling, suggesting that PeERS may involve in the organ senescence. The expression pattern of PeERS after emasculation did not change significantly, indicating that PeERS could not be induced by endogenous ethylene. It is possible that ethylene sensitivity in Phalaenopsis equestris flowers might be regulated at the post transcriptional level. A phylogenetic tree was constructed by Neighbor-Joining method, demonstrating that PeERS clustered within the monocot ethylene receptor gene clade. This phylogenetic tree divided into two clades and for each of clade consists of both monocots and dicots, suggesting that ethylene receptor genes were present before the divergence of monocot and dicot plants. Furthermore, the function of PeERS was also analyzed using transgenic plant approach. Sense cDNA of PeERS under control of the constitutive CaMV35S promoter was introduced into wild type and ethylene insensitive mutants (etr1-1) Arabidopsis plants. T2 seedlings generated from transgenic plants did not reveal marked triple response phenotypes. The results suggested that the PeERS transgene was not functionally active in the transgenic Arabidopsis plants. The causes for these results need to be explored by further experiments.
1.Abeles F.B., Morgan P.W. and Saltveit M.E. (1992) Ethylene in Plant Biology, 2nd ed. Academic Press, San Diego, CA, pp. 264-296.
2.Alonso J.M., Hirayama T., Roman G., Nourizadeh S. and Ecker J.R. (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284: 2148-2152.
3.Bassett C.L., Artlip T.S. and Callahan A.M. (2002) Characterization of the peach homologue of the ethylene receptor, PpETR1, reveals some unusual features regarding transcript processing. Planta 215: 679-688.
4.Bechtold N., Eillis J. and Pelletier G. (1993) In plaanta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Paris, Life Sciences 316: 1194-1199.
5.Bleecker A.B. (1999) Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci. 4: 269-274.
6.Bleecker A.B. and Kende H. (2000) Ethylene: A gaseous signal molecular in plants. Annu. Rev. Cell Dev. Biol. 16: 1-18.
7.Bleecker A.B. and Schaller G.E. (1996) The mechanism of ethylene perception. Plant Physiol. 111: 653-660.
8.Bui A.O. and O´Neill S.D. (1998) Three 1-aminocyclopropane-1-carboxylate synthase genes regulated by primary and secondary pollination signals in orchid flowers. Plant Physiol. 116: 419-428.
9.Burg S.P. and Burg E.A. (1967) Molecular requirement for the biologicalactivity of ethylene. Plant Physiol. 42: 144-152.
10.Cancel J.D. and Larsen P.B. (2002) Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiol. 129: 1557-1567.
11.Chai I.J., Lee B.H., Wang W.K., Liang C.C. and Lin C.Y. (1999) Molecular cloning of the Phalaenopsis sp. 'KCbutterfly' ethylene response sensor cDNA. Unpublished.
12.Chang C. (1996) The ethylene signal transduction pathway in Arabidopsis: an emerging paradigm? Trends Biochem. Sci. 21: 129-133.
13.Chang C., Kwok S.F., Bleecker A.B. and Meyerowitz E.M. (1993) Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators. Science 262: 539-544.
14.Chang C. and Meyerowitz E.M. (1995) The ethylene hormone response in Arabidopsis: A eukaryotic two-component signaling system. Proc. Natl. Acad. Sci. USA. 92: 4129-1433.
15.Chang C. and Shocky J.A. (1999) The ethylene-response pathway: signal perception to gene regulation. Curr. Opi. Plant Biol. 2: 352-358.
16.Chang C. and Stadler R. (2001) Ethylene hormone receptor action in Arabidopsis. BioEssays 23: 619-627.
17.Chao Q., Rothenberg M., Solano R., Roman G., Terzaghi W. and Ecker J.R. (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89: 1133-1144.
18.Charng Y.Y., Sun C.W., Yan, S.L., Chou S.J. Chen, Y.R. and Yang S.F. (1997) cDNA sequence of a putative ethylene receptor from carnation petals (Accession No. AF016250) (PGR97-144). Plant Physiol. 115: 863.
19.Chen W.H. and Wang Y.T. (1996) Phalaenopsis orchid culture. Taiwan Sugar Research Institute 43: 11-16.
20.Chen Y.F., Randlett M.D., Findell J.L. and Schaller G.E. (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. JBC 277(22): 19861-19866.
21.Clark K.L., Larsen P.B., Wang X. and Chang C. (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene erceptors. Proc. Natl. Acad. Sci. USA. 95: 5401-5406.
22.Clough S.J. and Bent A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.
23.Dervinis C., Clark D.G., Barrett J.E. and Nell T.A. (2000) Effect of pollination and exogenous ethylene on accumulation of ETR1 homologue transcripts during flower petal abscission in geranium (pelargonium × hortorum L.H. Bailey). Plant Mol. Biol. 42: 847-856.
24.Do Y.Y., Chen Y.C. and Huang P.L. (1999) Molecular analysis of a cDNA encoding ethylene receptor that expresses in Phalaenopsis petals. Plant Physiol. 119(4): 1567.
25.Doyle J.J. and Doyle J.L. (1987) A rapod isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11-15.
26.Ecker J.R. (1995) The ethylene signal transduction pathway in plants. Science 268: 667-674.
27.Eisinger W., Croner L. and Taiz L. (1983) Ethylene-induced lateral expansion in etiolated pea stems: Kinetics, cell wall synthesis and osmotic potential. Plant Physiol. 73: 407-412.
28.Gamble R.L., Coonfield M.L. and Schaller G.E. (1998) Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc.Natl. Acad. Sci. USA. 95: 7825-7829.
29.Gamble R.L., Qu X. and Schaller G.E. (2002) Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol. 128: 1428-1438.
30.Hua J., Chang C., Sun Q. and Meyerowitz E.M. (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269: 1712-1714.
31.Hua J. and Meyerowitz E.M. (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261-271.
32.Hua J., Sakai H., Nourizadeh S., Chen Q.G., Bleecker A.B., Ecker J.R. and Meyerowitz E.M. (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis thaliana. Plant Cell 10: 1321-1332.
33.Huang Y., Li H., Hutchison C.E., Laskey J. and Kieber J.J. (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J. 33(2): 221-233.
34.Huang W.F., Do Y.Y. and Huang P.L. (2002) Cloning and analysis of ethylene receptor gene from Oncidium Gower Ramsey. master thesis.
35.Hwang I., Chen H.C. and Sheen J. (2002) Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129: 500-515.
36.Imamura A., Hanaki N., Umeda H., Nakamura A., Suzuki T., Ueguchi C. and Mizuno T. (1998) Response regulators implicated in His-to-Asp phosphotransfer signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA. 95: 2691-2696.
37.Imanishi S., Mori H. and Nagata M. (2001) Ethylene receptor gene homologue from tomato-ripening mutant Nr-2. Plant and Cell Physiol. 42, s83.
38.Kende H. (1993) Ethylene biosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 44: 283-307.
39.Kieber J.J., Rothenberg M., Roman G., Feldmann K.A. and Ecker J.R. (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427-441.
40.Klee H. and Tieman D. (2002) The tomato ethylene receptor gene family: Form and function. Physiol. Plant 115: 336-341.
41.Knoester M., Hennig J., van Loon L.C., Bol J.F. and Linthorst H.J.M. (1997) Isolation and characterization of a tobacco cDNA encoding an ETR1 homolog (Accession No. AF022727). Plant Physiol. 115: 1731.
42.Lashbrook C.C., Tiemann D.M. and Klee H.J. (1998) Differential regulation of the tomato ETR gene family throughout plant development. Plant J. 15: 243-252.
43.Lorenzo O., Piqueras R., Serrano J.S.S. and Solano R. (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathway in plant defense. Plant Cell 15: 165-178.
44.Morgan P.W. (1984) Is ethylene the natural regulator of abscission? In ethylene: biochemical, physiological and applied aspects, Y. Fuchs and E. Chalutz, eds., Martinus Nijhoff, The Hague, Netherlands, pp. 231-240.
45.Murashige T. and Skoog F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15: 473-497.
46.Nadeau J.A., Zhang X.S., Nair H. and O´Neill S.D. (1993) Temporal and spatial regulation of 1-aminocyclopropane-1-carboxylate oxidase in the pollination- induced senescence of orchid flowers. Plant Physiol. 103: 31-39.
47.Nagata M., Tanikawa N., Onozaki T. and Mori H. (2000) Ethylene receptor gene (ETR) homolog from carnation. J. Japanese Society for Horticulture Science 69, s1, 407.
48.Ohme-Takagi M. and Shinshi H. (1990) Structure and expression of tobacco beta-1,3-glucanase gene. Plant Mol. Biol. 15: 941-946.
49.Ohme-Takagi M. and Shinshi H. (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7: 173-182.
50.O´Neill S.D., Nadeau J.A., Zhang X.S., Bui A.Q. and Halevy A.H. (1993) Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5: 419-432.
51.Ouaked F., Rozhon W., Lecourieux D. and Hirt H. (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO J. 22(6): 1282-1288.
52. Parkinson J.S. and Kofoid E.C. (1992) Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26: 71-112.
53.Rodriguez F.I., Esch J.J., Hall A.E., Binder B.M., Schaller G.E. and Bleecker A.B. (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283: 996-998.
54.Sakai H., Hua J., Chen Q.G., Chang C., Medrano L.J., Bleecker A.B. and Meyerowitz E.M. (1998) ETR2 is an ETR-like gene involved in ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA. 95: 5812-5817.
55.Sato N.K., Yuhashi K.I., Higashi K., Hosoya K., Kubota M. and Ezura H. (1999) Stage-and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiol. 119: 321-329.
56.Schaller G.E. and Bleecker A.B. (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270: 1809-1811.
57.Shibuya K., Satoh S. and Yoshioka T. (1998) A cDNA encoding a putative ethylene receptor related to petalsenescence in carnation (Dianthus caryophyllus L.) flowers (Accession No. AF034770) (PGR98-019). Plant Physiol. 116: 867.
58.Shibuya K., Nagata M., Tanikawa N., Yoshioka T., Hashiba T. and Satoh S. (2002) Comparison of mRNA level of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). J. Exp. Bot. 53: 399-406.
59.Solano R., Stepanova A., Chao Q. and Ecker J.R. (1998) Nuclear events in ethylene signaling: a transcription cascade mediated by ETHYLENE- INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes & Dev. 12: 3703-3714.
60.Tatsuki M. and Mori H. (2001) Phosphorylation of tomato 1-aminocyclopropane- 1-carboxylic acid synthase, Le-ACS2, at the C-terminal region. JBC 276: 28051-28057.
61.Terajima Y., Nukui H., Kobayashi A., Fujimoto S., Hase S., Yoshioka T., Hashiba T. and Satoh S. (2001) Molecular cloning and characterization of a cDNA for a novel ethylene receptor, NT-ERS1, of tobacco (Nicotiana tabacum L.). Plant Cell Physiol. 42: 308-313.
62.Theologis A. (1998) Ethylene signaling: redundant receptors all have their say. Curr. Biol. 8: R875-R878.
63.Tieman D.M. and Klee H.J. (1999) Differential expression of two novel members of the tomato ethylene receptor family. Plant Physiol. 120: 165-172.
64.Tieman D.M., Taylor M.G., Ciardi J.A. and Klee H.J. (2000) The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proc. Natl. Acad. Sci. USA. 97: 5663-2668.
65.Vogel J.P., Woeste K.E., Theologis A. and Kieber J.J. (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc. Natl. Acad. Sci. USA. 95: 4766-4771.
66.Wang L.L.C., Li H. and Ecker J.R. (2002) Ethylene biosynthesis and signaling networks. Plant Cell: S131-S151.
67.Wang N.N., Yang S.F. and Charng Y.Y. (2001) Differential expression of 1-aminocyclopropane-1-carboxylate synthase genes during orchid flower senescence induced by the protein phosphatase inhibitor okadaic acid. Plant Physiol. 126: 253-260.
68.Wang W., Hall A.E., O´Malley R. and Bleecker A.B. (2003) Proc. Natl. Acad. Sci. USA. 100:352-357.
69.Wilkinson J.Q., Lanahan M.B., Clark D.G., Bleecker A.B., Chang C., Meyerowitz E.M. and Klee H.J. (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat. Biotechnol. 15: 444-447.
70.Wilkinson J.Q., Lanahan M.B., Yen H.C., Giovannoni J.J. and Klee H.J. (1995) An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270: 1807-1808.
71.Woeste K.E. and Kieber J.J. (2000) A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant cell 12: 443-455.
72.Woltering E.J. (1990) Interorgan translocation of 1-aminocyclopropane-1- carboxylic acid and ethylene coordinates senescence in emasculated Cymbidium flowers. Plant Physiol. 92: 837-845.
73.Wu H.T., Do Y.Y. and Hwang P.L. (1999) Nucleotide sequence of a cDNA encoding ethylene receptor from banana fruits. Plant Physiol. 119: 805.
74.Wurgler M.S.M. and Saito H. (1997) Two component signal transducers and MAPK cascades. Trends Biochem. Sci. 22: 172-176.
75.Xie C., Zhang Z.G., Zhang J.S., He X.J., Cao W.H., He S.J. and Chen S.Y. (2002) Spatial expression and characterization of a putative ethylene receptor protein NTHK1 in tobacco. Plant Cell Physiol. 43(7): 810-815.
76.Yang S.F. and Hoffman N.E. (1984) Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35: 155-189.
77.Zhang J.S., Xie C., Liu F., Liu F. and Chen S.Y. (1999) A novel tobacco gene coding for a product similar to bacterial two-component regulators. Chin. Sci. Bull. 44(11): 1025-1029.
78.Zhang J.S., Xie C., Wu X.L., Du B.X. and Chen S.Y. (2001) Tobacco two-component gene NTHK2. Chin. Sci. Bull. 46(7): 574-577.
79.Zhao X.C., Qu X., Mathews D.E. and Schaller G.E. (2002) Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis. Plant Physiol. 130: 1983-1991.
80.Zhou D., Kalaitzis P., Mattoo A. and Tucker M. (1996a) The mRNA for an ETR1 homologue in tomato is constitutively expressed in vegetative and reproductive tissues. Plant Mol. Biol. 30: 1331-1338.
81.Zhou D., Mattoo A. and Tucker M. (1996b) Molecular cloning of a tomato cDNA encoding an ethylene receptor. Plant Physiol. 110: 1435-1436.