| 研究生: |
李則輝 Lee, Tse-hui |
|---|---|
| 論文名稱: |
Amisulpride 鏡像選擇性藥物動力學 Enantioselective Pharmacokinetics of Amisulpride |
| 指導教授: |
周辰熹
Chou, Chen-hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學研究所 Institute of Clinical Pharmacy |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 藥物輸送子 、藥物動力學 、鏡像選擇性 、毛細管電泳法 、對掌性分析方法 、Amisulpride |
| 外文關鍵詞: | Amisulpride, chiral separation, durg transporter, pharmacokinetics, enantioselective, capillary electrophoresis |
| 相關次數: | 點閱:156 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
簡介: Amisulpride為非典型的抗精神病藥物,其在低劑量時對於突觸前dopamine受器 (D2, D3)具有較高親和性,增加dopamine傳導,而對精神病的負性症狀具有改善效果。高劑量則是對突觸後的dopamine受器 (D2, D3)具有拮抗效果,而能改善正性症狀。特別的是R(+) amisulpride能夠降低由S(-) amisulpride或是haloperidol所引起之catalepsy,也稍微解釋了雖然amisulpride作用的受器為類似典型抗精神病藥物的dopamine受器,然而卻像非典型抗精神病藥物般有較少的副作用。Amisulpride於靜脈注射給予後,約50至70%自腎臟及15%自膽汁以原型態排除,僅僅只有10至15%經由肝臟代謝成兩個不具活性的代謝物。由於amisulpride的肝代謝率很低且代謝物無活性,因此肝臟酵素的誘導及抑制對於amisulpride的影響較小。相對的藥物輸送子對於amisulpride藥動性質與療效的影響更顯重要,然而目前此方面的文獻仍較為缺乏。
目的:本研究目的在利用具鏡像選擇性的毛細管電泳分析方法,探討amisulpride於鼠體及人體內的動態。
方法: 以口服及靜脈注射方式給予大白鼠消旋amisulpride或是同時投予藥物輸送子P-gp抑制劑cyclosporine,觀測amisulpride在大白鼠血中動態與膽汁排除之機制以及其鏡像選擇性。而人體動態分布方面,則是藉由分析人體口服amisulpride生體相等性試驗之血漿檢品,以研究amisulpride個別鏡像異構物於國人之動力學及其鏡像選擇性,並探討amisulpride個別鏡像異構物之生體相等性。
結果:Amisulpride之活體實驗結果顯示,控制組及交互作用組中S-amisulpride於膽汁中之排除量皆為R-amisulpride的2倍;膽汁中amisulpride濃度曲線下面積遠大於血漿中濃度曲線下面積,且此比值在加入藥物輸送子抑制劑大幅下降至接近一;當同時口服投予amisulpride及cyclosporine,會顯著增加口服amisulpride的血中濃度曲線下面積;證實amisulpride於大白鼠之血中動態及膽汁排除具有藥物輸送子調控的主動分泌且鏡像選擇性的機制;而藉由分析生體相等性試驗之台灣人血漿檢品,已成功地描述amisulpride個別鏡像異構物於國人之鏡像選擇性動力學。
結論:Amisulpride於大白鼠及人體的藥物動力學皆具鏡像選擇性。在大白鼠體內,不論血中或是膽汁中濃度,在給藥後任何時間點皆為S-amisulpride大於R-amisulpride;於大白鼠活體交互作用實驗的結果顯示,此選擇性可能是由於藥物輸送子Pgp對於S-amisulpride較具親和力所造成。
Introduction: Amisulpride is an atypical antipsychotic belonging to the class of substituted benzamides. It has preferential affinity for presynaptic D2 and D3 receptors at low doses (<10 mg/kg), leading to enhanced dopamine transmission and may be beneficial for negative syndrome, whereas at higher doses it antagonise postsynaptic D2 and D3 receptors, thus reducing dopamine transmission and improve positive syndrome. Interestingly, R(+)-amisulpride can reduce the catalepsy induced by S(-)-amisulpride or haloperidol, this may explain why amisulpride is not work as atypical antipsychotic but act like it. Amisulpride undergoes minimal hepatic metabolism and produces two inactive metabolites via N-dealkylation and oxidation. Around 50-70% and 15% of dose was recovered unchanged in urine and feces, respectively, after intravenous administration. The induction or inhibition of hepatic enzyme is less important due to its weak metabolism. On the contrary, the role of drug transporters on the kinetics and dynamics of amisulpride enantiomers is of great importance.
Purpose: The aim of this study was to examine the kinetics of amisulpride enantiomers in rats and humans using a modified enantioselective capillary electrophoresis method.
Methods: Enantioselective pharmacokinetic and biliary excretion of amisulpride in SD rats was explored following intravenous and oral administration of racemic amisulpride alone or in combination with a well-known Pgp inhibitor, cyclosporine. The enantioselective kinetics of amisulpride in humans was examined in a bioequivalence study conducted in Taiwanese subjects.
Results: The amount of S-amisulpride excreted in bile was twice higher than that of R-amisulpride both in control or inhibition group. The area under concentration-time curves (AUCs) of amisulpride enantiomers in bile were much higher than those in plasma, and this difference was almost diminished in the presence of cyclosporine. The AUC of both amisulpride enantiomers in plasma was significantly increased when cyclosporine was co-administered orally. These results confirmed the absorption and disposition kinetics and active biliary excretion of amisulpride was enantioselective. In human study, the enantioselective pharmacokinetics of amisulpride in Taiwanese was successfully elucidated.
Conclusion: The pharmacokinetics of amisulpride is enantioselective both in rats and humans. After administration to the rat, the concentration of in plasma and bile S-amisulpride is always higher than those of R-amisulpride. Results of animal study indicated this enantioselective pharmacokinetics is probably due to the difference in affinity of Pgp to the enantiomers.
Ascalone V, Ripamonti M and Malavasi B (1996) Stereospecific determination of amisulpride, a new benzamide derivative, in human plasma and urine by automated solid-phase extraction and liquid chromatography on a chiral column. application to pharmacokinetics. J Chromatogr B Biomed Appl 676:95-105.
Bohbot M, Doare L and Diquet B (1987) Determination of a new benzamide, amisulpride, in human plasma by reversed-phase ion-pair high-performance liquid chromatography. J Chromatogr 416:414-419.
Brewster ME and Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59:645-666.
Caccia S (2000) Biotransformation of post-clozapine antipsychotics: pharmacological implications. Clin Pharmacokinet 38:393-414.
Castelli MP, Mocci I, Sanna AM, Gessa GL and Pani L (2001) (-)S amisulpride binds with high affinity to cloned dopamine D(3) and D(2) receptors. Eur J Pharmacol 432:143-147.
Grossman PD and Colburn JC (1992) Capillary electrophoresis: theory & practice. Academic Press, Inc., San Diego.
Gschwend MH, Arnold P, Ring J and Martin W (2006) Selective and sensitive determination of amisulpride in human plasma by liquid chromatography-tandem mass spectrometry with positive electrospray ionisation and multiple reaction monitoring. J Chromatogr B Analyt Technol Biomed Life Sci 831:132-139.
Gubitz G and Schmid MG (2008) Chiral separation by capillary electromigration techniques. J Chromatogr A 1204:140-156.
Juvancz Z, Kendrovics RB, Ivanyi R and Szente L (2008) The role of cyclodextrins in chiral capillary electrophoresis. Electrophoresis 29:1701-1712.
Loftsson T and Brewster ME (1996) Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 85:1017-1025.
Malavasi B, Locatelli M, Ripamonti M and Ascalone V (1996) Determination of amisulpride, a new benzamide derivative, in human plasma and urine by liquid-liquid extraction or solid-phase extraction in combination with high-performance liquid chromatography and fluorescence detection. application to pharmacokinetics. J Chromatogr B Biomed Appl 676:107-115.
Mangelings D and Vander Heyden Y (2008) Chiral separations in sub- and supercritical fluid chromatography. J Sep Sci 31:1252-1273.
Marchese G, Bartholini F, Ruiu S, Casti P, Saba P, Gessa G and Pani L (2002) Effect of the amisulpride isomers on rat catalepsy. Eur J Pharmacol 444:69-74.
Markowitz JS and Patrick KS (2008) Differential pharmacokinetics and pharmacodynamics of methylphenidate enantiomers: does chirality matter? J Clin Psychopharmacol 28:S54-61.
Mauri MC, Volonteri LS, Colasanti A, Fiorentini A, De Gaspari IF and Bareggi SR (2007) Clinical pharmacokinetics of atypical antipsychotics: a critical review of the relationship between plasma concentrations and clinical response. Clin Pharmacokinet 46:359-388.
Miller CP and Ullrich JW (2008) A consideration of the patentability of enantiomers in the pharmaceutical industry in the United States. Chirality 20:762-770.
Musenga A, Mandrioli R, Morganti E, Fanali S and Raggi MA (2008) Enantioselective analysis of amisulpride in pharmaceutical formulations by means of capillary electrophoresis. J Pharm Biomed Anal 46:966-970.
Nirogi R, Bhyrapuneni G, Kandikere V, Mudigonda K, Ajjala D, Suraneni R and Mukkanti K (2008) Liquid chromatography tandem mass spectrometry method for the quantification of amisulpride with LLOQ of 100 pg/mL using 100 microL of plasma. Biomed Chromatogr 22:1424-1433.
Pehourcq F, Ouariki S and Begaud B (2003) Rapid high-performance liquid chromatographic measurement of amisulpride in human plasma: application to manage acute intoxication. J Chromatogr B Analyt Technol Biomed Life Sci 789:101-105.
Rosenzweig P, Canal M, Patat A, Bergougnan L, Zieleniuk I and Bianchetti G (2002) A review of the pharmacokinetics, tolerability and pharmacodynamics of amisulpride in healthy volunteers. Hum Psychopharmacol 17:1-13.
Sachse J, Hartter S, Weigmann H and Hiemke C (2003) Automated determination of amisulpride by liquid chromatography with column switching and spectrophotometric detection. J Chromatogr B Analyt Technol Biomed Life Sci 784:405-410.
Schmitt U, Abou El-Ela A, Guo LJ, Glavinas H, Krajcsi P, Baron JM, Tillmann C, Hiemke C, Langguth P and Hartter S (2006) Cyclosporine A (CsA) affects the pharmacodynamics and pharmacokinetics of the atypical antipsychotic amisulpride probably via inhibition of P-glycoprotein (P-gp). J Neural Transm 113:787-801.
Scriba GK (2008) Cyclodextrins in capillary electrophoresis enantioseparations--recent developments and applications. J Sep Sci 31:1991-2011.
Skibinski R, Komsta L, Hopkala H and Suchodolska I (2007) Comparative validation of amisulpride determination in pharmaceuticals by several chromatographic, electrophoretic and spectrophotometric methods. Anal Chim Acta 590:195-202.
Sokoloff P, Andrieux M, Besancon R, Pilon C, Martres MP, Giros B and Schwartz JC (1992) Pharmacology of human dopamine D3 receptor expressed in a mammalian cell line: comparison with D2 receptor. Eur J Pharmacol 225:331-337.
蘇美欣 (2006) 在大白鼠血漿中amisulpride鏡像異構物的高效液相層析法及毛細管電泳定量方法之開發與應用. 國立成功大學臨床藥學所 93 級碩士論文.
校內:2108-07-21公開