簡易檢索 / 詳目顯示

研究生: 王麒瑋
Wang, Chea-Wei
論文名稱: 支向機核心函數適用指標之建立
Index of Kernel Functions for Support Vector Machine
指導教授: 利德江
Li, Der-Chang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理科學系
Department of Industrial Management Science
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 44
外文關鍵詞: index of kernel function, support vector machines., Clustering
相關次數: 點閱:142下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • None

    A Support Vector Machine (SVM) is a learning machine of novel type, based on statistical learning framework. It has become an increasingly popular tool for machine learning tasks such as classification, regression or novelty detection. To increase learning accuracy of a SVM, kernel plays an important role. This research aims at finding an index of kernels for support vector machines. Used simulation data are produced following Dirichlet and normal distributions. A real experiment for choosing kernel functions is also provided.

    ABLE OF CONTENTS ABSTRACT ……………….……………………………………………………………..i ACKNOWLEDGEMENTS …………………...………………………………………ii TABLE OF CONTENTS …………………………………………………………….iii LIST OF FIGURES …...………………………………………………………….……..v LIST OF F IGURES ..…...………………………………………………………….…..vi CHAPTER 1 INTRODUCTION ……………………………………………….1 1.1 Motivation ……………………………………………………………….2 1.2 Objectives and Approach ………………………………………………………3 CHAPTER 2 LITERATURE REVIEW ………………………………………………….4 2.1 Support Vector Machine ……………………………………………………..4 2.2 Extend of Support Vector Machine ….…………………………………….10 2.2.1 One-class Support Vector Machine (Distribution Estimation) ……..10 2.2.2 Support Vector Regression …….……………………………………11 2.3 Applications of Support Vector Machine ……………………………………..13 CHAPTER 3 INDEX OF KERNEL FUNCTIONS …………………………..……15 3.1 Kernel Functions of Support Vector Machine …………………..……...…..15 3.3.1 Polynomial Kernel Function ……………………………………….…16 3.3.2 Radial Basis Function (RBF )……...……………………………….….…17 3.3.3 Sigmoid Kernel Function ……….………………………………….…..17 3.2 Mess Level ...………………………………………………………………...18 CHAPTER 4 EXPERIMENTAL STUDY ……………………………………...22 4.1 Normal Distribution ……………………………………………………….24 4.2 Dirichlet Distribution ……………………………………………………….24 4.2.1 Generating Dirichlet Distribution ……………………………………25 4.3 Index Establishing ……….………………………………………………..27 4.4 Experimental Cases ………………………………………………………..35 CHAPTER 5 DISCUSSIONS AND SUGGESTIONS ….………………37 REFERENCE ………………………………………….…………………….…39 APPENDIX The Description of pima Data Set …………….……………….……...41

    REFERENCES
    Schölkopf, B., Sung, K.-K., Burges, C.J.C., Niyogi, P., Pogio, T. and Vapnik, V. “Comparing support vector machines with Gaussian kernels to radial basis function classifiers,” IEEE Trans in signal processing, vol. 11, 5, 1055-1064, 1999.

    Buxton, B., Trotter, M., Burbidge, R., Holden, S., “Drug design by machine learning: support vector machines for pharmaceutical data analysis,” Computer and Chemistry, 26, 5-14, 2001.

    Boser, B., Giupm, I., Vapnik, V., “A training algorithm for optimal margin classifiers,” COLT’92, 144-152, 1992.

    Bottou, L., Cortes, X., Denker, J. S., Druker, H., Guyon, I., Jackel, L. D.,

    LeCun, Y., Sackinger, E., Simard, P., Vapnik, V, Milleer, U.A., “Comparison of classifier methods: A case study in handwritten digit recognition,” Proceedings of 12th International Conference on Pattern Recognition and Neural Network, 1994.

    Chang, C.-C., Lin, C.-J., “Training -support vector classifiers: Theory and algorithms,” Neural Computation 13(9), 2119-2147, 2001.

    Cortes, C., Vapnik, V., “Support-vector networks,” Machine Learning, 20, 273-297, 1995.

    Francis, E.H. and Lijuan, C., “Financial Forecasting Using Support vector Machines,” Neural Computing & Application, 10, 184-192, 2001.

    Smola, A., Schölkopf, B., Bartlett, P. L., and Williamson, R. C., “New support vector algorithms,” Neural Computation, 12, 1207-1245, 2000.

    Vapnik, V., “ Statistical Learning Theory,” Wiley, NY, 1998.

    Vapnik, V., “Estimation of Dependences Based on Empirical Data,” Springer-Verlag, NY, 1982.

    Vapnik, V., “The Nature of Statistical Learning Theory,” Springer-Verlag, NY, 1995.

    Watkins, C. and Weston, J., “Multi-class support vector machines,” Technical Report CSD-TR-98-04, Royal Holloway, 1998.

    Wilks, S. S., “Mathematical Statistics,” John Wiley, New York.1962.

    Yan, G., “Combining Discriminant Models with New Multi-Class SVMs,” Pattern Analysis & Applications, 5, 168-179. 2002.

    Yong, M. and Xiaoqing, D., “Face Detection Based on Cost-Sensitive Support Vector Machines,” State Key Laboratory of Intelligent Technology and System Dept. of Electtronic Engineering, Tsinghua University, Beijing 100084, P. R. Chian.

    下載圖示 校內:立即公開
    校外:2003-06-30公開
    QR CODE