研究生: |
林東毅 Lin, Tung-Yi |
---|---|
論文名稱: |
應用晶格泊松波茲曼法於微渠道中由週期性電場與壓力場聯合驅動電滲透流之特性研究 Characteristic Study of Electro-Osmotic Flow Driven by Periodic Electric and Pressure Fields in Micro-channels via Lattice Poisson Boltzmann Method |
指導教授: |
陳介力
Chen, Chieh-Li |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 194 |
中文關鍵詞: | 電滲透流 、微渠道 、晶格泊松波茲曼法 、相位角 、相位差 、異質性表面電位 、隆起物 、孔蝕 |
外文關鍵詞: | electro-osmotic flow, microchannel, lattice Poisson-Boltzmann method, phase angles, phase difference, heterogeneous surface potential, ridge, cavity |
相關次數: | 點閱:200 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用晶格泊松波茲曼法模擬分析在微渠道中二維電滲透流場流體流動之特性。其中分別詳細地討論渠道表面電位、表面性質、離子莫耳濃度、渠道高度與外加驅動力等對電滲流體流動所產生的影響。並且還模擬了在本文全新設計的I字型微渠道中電滲透流之流動特性。本文根據渠道幾何形狀與表面性質分成三個部分來分別詳細討論:
首先,先進行在兩平行長直型平板微渠道中之電滲透流模擬。本文提供一些方法來擾動流體並進而產生渦旋,例如:調整渠道異質性表面電位、外加周期性電場與壓力場之相位角等。並且可以藉由適當的分布配置異質性表面電位在不同的位置而分別在渠道中央與近壁處產生渦旋。然而,渦旋之尺寸大小、結構強度與旋轉方向都可以藉由適當地設定單獨驅動力場之相位角或是聯合驅動力場之相位差來控制。本文提供這些方法來產生渦旋的目的是希望能夠擾亂流體的結構產生類似像障礙物的渦旋以期能夠增加微混合之性能。對於未來微混合器的設計研究提供一些想法。
第二個部分,本文是設計一個尚未有其他研究所討論過的I字型微渠道。而在此微渠道中流體的擾動與流率之控制機制是此部分所要強調研究之主題。在流率控制的部分,本文是利用配置異質性電位並且操控電場強度、單獨驅動力場之相位角與聯合驅動力場之相位差來研究調查渠道中兩接合處之流量比。結果發現流體速度與流率可以藉由輸入適當的相位角與相位差來獲得精確的調整。此外,對於增進流體擾動的部分,可以利用配置異質性荷電極板於渠道各個位置來引發。並且還討論電極板之數量對於微流體的擾動所產生的影響。由單一電極板之模擬個案中,當增加電極板與渠道入口之間的距離可以增加流率比。並且在流動方向上配置對稱的電極板且電位為渠道表面電位的兩倍時會有渦旋的產生。而渦旋之數量可由所使用的電極板之數量來獲得控制。另外,本文還將問題延伸至雙接合管的問題。重要研究結果指出儘管輸入各種不同的相位角,後接合管之流率比幾乎沒有差異,兩接合處之流量是近乎等量的。
最後,我們將針對渠道的表面特徵性質如何影響電滲透流體流動來進行討論。其主要討論的表面特徵有隆起物、孔穴並且設計障礙物於渠道中來研究在I字型微渠道中之流量關係。結果發現流體通過單一隆起物與孔穴時皆會使流量降低。另外,當兩種表面特徵之電位異於光滑表面電位且逐漸增加時,亦會減少流量。當隆起物的高度接近電雙層厚度時對於流量會有較大的變化產生。本研究也模擬當流體流過兩個連續孔穴或者是隆起物與孔穴之組合時對流率所產生的影響。研究結果指出當增加兩種狀況其兩者之距離時皆會使得流量降低。並且更進一步的去討論隆起物與孔穴之前後位置關係。結果發現孔穴位置在隆起物後方時對於流量會有較大的影響。針對這兩種表面特徵,根據研究結果指出隆起物所引起流率的變化較孔穴大。由以上之結果與光滑表面做比較時可以得到一個重要結論,即可以利用調整相位角與相位差的方式來進行流率的精確控制。最後則設計一障礙物於渠道表面上並進行流動之模擬。結果指出當流體流過一個高度與絕對值電位較高的障礙物時皆會減少流量。
綜合以上三個部份的研究結果不但指出表面特徵性質對於微渠道中電滲透流率之重要性,而且證實了具有周期性驅動力場之晶格泊松波茲曼法之優勢。因此,本文的主要貢獻是提供一個簡單的計算方法與驅動方式來模擬在複雜幾何形狀的微渠道中電滲透流之特性。
The characteristics of 2-dimensional (2D) electro-osmotic flow fields are analyzed by applying the lattice Poisson-Boltzmann method to simulate fluid flow in micro-channels. We discuss in detail the influences of surface potential, wall surface properties, ionic molar concentration, channel height, and external driving force fields on fluid flow, and we simulated the fluid flow within a novel I-type microchannel. This study is categorized into three areas.
First, we introduce an alternative scheme for producing vortexes in a straight channel by adjusting the heterogeneous surface potentials and phase angles of the periodic electrical and pressure force fields. By distributing heterogeneous surface potentials at various positions creates vortexes near walls, or in the center of the channel. The size, strength, and rotational direction of vortexes are controllable by setting appropriate phase angles for a single driving force field, or by defining the phase differences between the combined electrical and pressure force fields. These obstacle-like vortexes perturb the fluid and hinder flow, and thus, may be useful for enhancing micro-mixer performance.
Second, we study the perturbed fluid and flow rate control mechanisms in an I-type microchannel. We investigate the flow rate ratio between two junction sections that results from placing heterogeneous potentials in the channel, and from manipulating the electric field strength, phase angle, phase difference between the driving fields. The fluid velocity and flow rate are precisely tunable by inputting appropriate phase angles and phase differences for the driving fields. We also study the perturbations induced by heterogeneously charged plates in the channel. For single plate cases, increasing the distance between the plate and the inlet increases the flow rate ratio. Vortexes form when the potential of symmetrically placed plates is twice the channel potential in the direction of flow. The number of vortexes is controllable by the number of plates used. Placing the symmetrically charged plates on the lateral walls produces stronger vortexes. The flow rate ratio is can be bought to almost unity in channels with single and double junctions by adjusting the phase angle to modifying the flow rate.
Third, we investigate how flow rate is affected by ridges, cavities, and obstacles in the rough channel. The flow rate is reduced over ridges or cavities in the channel, and reduces as the separation distance between a ridge and a cavity or between two sequential cavities is increased. Increasing the zeta potential of these surface features also reduces flow. Placing a cavity behind a ridge produces a greater effect on flow than placing it in front of the ridge does, suggesting that ridges have a greater effect on flow rates. The flow rate can be controlled precisely by adjusting the phase angle and phase difference in the rough channel. When the ridge height is comparable to the electric double layer thickness, there is a large variation in flow rate. The flow rate of a fluid passing over a taller, highly charged obstacle is reduced.
Our results show the importance of surface properties to flow rates in a microchannel and demonstrate the advantage of the lattice Poisson-Boltzmann method with a periodic driving force. We propose a simple computational scheme and driving way for simulating electro-osmotic flows in microchannels with complex geometries.
[1] Mark A., and Bruce K., “A PDMS-based gas permeation pump for on-chip fluid handing ding in microfluidic devices”, J. Micromech. Microeng., Vol. 16, pp. 2396-2402, 2006.
[2] Kim M. J. and Kim K. D., “Microscopic PIV Measurements for Electro-osmotic Flows in PDMS Microchannels”, J. Visual., Vol. 7, pp. 111-118, 2004.
[3] Nadapana V. and Sirshendu D., “Electroosmotic flow of power-law fluids at high zeta potentials”, Colloids and Surfaces A: Physicochem. Eng. Aspects., Vol. 368, pp. 44-52, 2010.
[4] Yan D. G.., Nguyen N. T., Yang C., and Huang X. Y., “Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique”, J. Chem. Phys., Vol. 124, pp. 021103, 2006.
[5] Horiuchi K., Dutta P. and Richards C. D., “Experiment and simulation of mixed flows in a trapezoidal microchannel”, Microfluid Nanofluid ., Vol. 3, pp. 347-358, 2007.
[6] Sze A., Erickson D., Ren L. Q. and Li D. Q., “Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow”, J.Colloid Interf.Sci ., Vol. 261, pp. 402-410, 2003.
[7] Dutta P. and Beskok A., “Analytical solution of combined electroosmotic/
pressure driven flows in two-dimensional straight channels: finite Debye layer effects”, Anal. Chem., Vol. 73, pp. 1979-1986, 2001
[8] Sadeghi A., Fattahi M. and Saidi M. H., “An Approximate Analytical Solution for Electro-Osmotic Flow of Power-Law Fluids in a Planar Microchannel”, J. Heat Transfer., Vol. 133, pp. 091701, 2011.
[9] Yau H. T., Wang C. C., Cho C. C. and Chen C. K., “A numerical investigation into electroosmotic flow in microchannels with complex wavy surfaces”, Thermal Sci., Vol. 15, pp. S87-S94, 2011.
[10] Alam J and Bowman J. C., “Energy-conserving simulation of incompressible electro-osmotic and pressure-driven flow”, Theoret. Comput. Fluid Dynamics., Vol. 16, pp. 133-150, 2002.
[11] Patankar N. A. and Hu H. H., “Numerical Simulation of Electroosmotic Flow”, Anal. Chem ., Vol. 70, pp. 1870-1881, 1998.
[12] Hadigol M., Nosrati R. and Raisee M., “Numerical analysis of mixed electroosmotic/pressure driven flow of power-law fluids in microchannels and micropumps”, Colloids and Surfaces A: Physicochem. Eng. Aspects ., Vol. 374, pp. 42-153, 2011.
[13] Garon M., Legare A., Guardo R., Savard P. and Buschmann M. D., “Streaming potential maps are spatially resolved indicators of amplitude, frequency and ionic strength dependant responses of articular cartilage to load”, J. Biomech., Vol. 35, pp. 207-216, 2002.
[14] Adamczyk Z., Sadlej K., Wajnryb E., Nattich M., Ekiel-Jezewska M. L. and Blawzdziewicz J., “Streaming potential studies of colloid, polyelectrolyte and protein deposition”, Advances in Colloid and Interface Science., Vol. 153, pp. 1-29, 2010.
[15] Chang C. L., Leong J. C., Hong T. F., Wang Y. N. and Fu L. M., “Experimental and Numerical Analysis of High Resolution Injection Technique for Capillary Electrophoresis Microchip”, Int. J. Mol. Sci., Vol. 12, pp. 3594-3605, 2011.
[16] Hsiung S. K., Lee C. H. and Lee G.. B., “Microcapillary electrophoresis chips utilizing controllable micro-lens structures and buried optical fibers for on-line optical detection”, Electrophoresis., Vol. 29, pp. 1866-1873, 2008.
[17] Carrique F., Arroyo F. J. and Delgado, A. V., “Sedimentation velocity and potential in concentrated colloidal suspension: Effect of a dynamic Stern layer”, Colloids and Surfaces A: Physicochem. Eng. Aspects., Vol. 195, pp. 157-169, 2001.
[18] Dutta P. and Beskok A., “Analysis of Time Periodic Electroosmotic Flows: Analogies to Stokes’ Second Problem”, Anal. Chem., Vol. 73, pp. 11-16, 2001.
[19] Xuan X. C. and Li D. Q., “Analysis of Electrokinetic Flow in Microfludic Networks”, J. Micromech and Microeng., Vol. 14, pp. 290-298, 2004.
[20] Maynes D. and Webb B. W., “Fully Developed Electroosmotic Heat Transfer in Microchannels”, Int. J. Heat Mass Transfer., Vol. 46, pp. 1359-1369, 2003.
[21] Yan D. G., Nguyen N. T., Yang C. and Huang X. Y., “Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique”, J. Chem. Phys., Vol. 124, pp. 021103, 2006.
[22] Sze A., Erickson D., Ren L. Q. and Li D. Q., “Zeta-potential measurement using the Smoluchowski equation and the slop of the current-time relationship in electroosmotic flow”, J. Colloid Interf. Sci., Vol. 261, pp. 402-410, 2003.
[23] Horiuchi K., Dutta P. and Richards C. D., “Experiment and simulation of mixed flows in a trapezoidal microchannel”, Microfluid Nanofluid., Vol. 3, pp. 347-358, 2007.
[24] Patankar N. A. and Hu H. H., “Numerical Simulation of Electroosmotic flow”, Anal. Chem ., Vol. 70, pp.1870-1881, 1998.
[25] Dutta P., Beskok A. and Warburton T. C., “Numerical Simulation of Mixed Electroosmotic/Pressure Driven Microflows”, Numerical Heat Transfer , Part A., Vol. 41, pp.131-148, 2002.
[26] Kim D. J. and Darve E., “Molecular dynamics simulation of electroosmotic flows in rough wall channels”, Phy. Rev. E., Vol. 73, pp. 051203, 2006.
[27] Kang S. M. and Suh Y. K., “Numerical analysis on electroosmotic flows in a microchannel with rectangle-waved surface roughness using the Poisson-Nernst-Planck model”, Microfluid Nanofluid ., Vol. 6, pp. 461-477, 2009.
[28] James B. T., Andres L. C. and Satish G. K., “Characterization of the effect of surface roughness and texture on fluid flow-past, present, and future”, Int. J. Therm. Sci., Vol. 45, pp. 962-968, 2006.
[29] Tang G.. H., Li Z., He Y. L. and Tao W. Q., “Experimental study of compressibility, roughness and rarefaction influences on microchannel flow”, Int. J. Heat. Mass. Transfer., Vol. 50, pp. 2282-2295, 2007.
[30] Weaver S. A., Barringer M. D. and Thole K. A., “Microchannels with manufacturing roughness levels”, J. Turbomachinery., Vol. 133, pp. 041014_1-8, 2011.
[31] Dieter A. and Wolf-Gladrow., “Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction” (Germany: Springer), 2000.
[32] Succi S. “The Lattice Boltzmann Equation for Fluid Dynamics and Beyond”, (Oxford: Clarendon), 2001.
[33] McNamara G. R. and Zanetti G., “Use of the Boltzmann Equation to Simulate Lattice-Gas Automata”, Phys. Rev. Lett., Vol. 61, pp. 2332-2335, 1988.
[34] Higuera F. J. and Jimenez J., “Boltzmann approach to lattice gas simulation”, Europhys. Lett., Vol. 9, pp. 663-668, 1989.
[35] Qian Y. H., d’Humiere D. and Lallemand P., “Lattice BGK Models for Navier-Stokes Equation”, Europhys. Lett., Vol. 17, pp. 479-484, 1992.
[36] Chen H., Chen S. and Matthaeus W. H., “Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method”, Phys. Rev. A. Vol. 45, pp. R5339-R5342, 1992.
[37] Bhatnagar P. L., Gross E. P. and Krook M, “A model for collision processes in gases I: Small amplitude processes in charged and neutral one-component systems”, Phys. Rev., Vol. 94 (3), pp. 511-525, 1954.
[38] Donald P. and Ziegler J., “Boundary conditions for lattice Boltzmann simulations”, J. Stat. Phys., Vol. 71, pp. 1171-1177, 1993.
[39] Skordos P. A., “Initial and boundary conditions for the lattice Boltzmann method”, Physical Review E., Vol. 48 (6), pp. 4823-4842, 1993.
[40] Noble D. R., Chen S., Georgiadis J. G. and Buckius R. O., “A consistent hydrodynamic boundary condition for the lattice Boltzmann method”, Phys. Fluids., Vol. 7, pp. 203-209, 1995.
[41] Inamuro T., Yoshino M. and Ogino F., “A non-slip boundary condition for lattice Boltzmann simulation”, Phys. Fluids., Vol. 7 (12), pp. 2928-2930, 1995.
[42] Chen S., Martinez D. O. and Mei R., “On boundary conditions in lattice Boltzmann methods”, Phys. Fluid., Vol. 8 (9), pp. 2527-2536, 1996.
[43] Zou Q. and He X., “On pressure and velocity boundary conditions for the lattice
Boltzmann BGK model”, Phys. Fluid., Vol. 9, pp. 1591-1598, 1997.
[44] He X. and Luo L.-S., “Lattice Boltzmann model for the incompressible Navier–Stokes equation”, J. Stat. Phys., Vol. 88, pp. 927-944, 1997.
[45] Shan X. and Chen H., “Lattice Boltzmann model for simulation flows with multiple phases and components”, Phys. Rev. E., Vol. 47, pp. 1815-1819, 1993.
[46] Qian Y. H. and Chen S. Y., “Finite size effect in lattice-BGK models”, Int. J. Mod. Phys. C., Vol. 8, pp. 763-771, 1997.
[47] He X. Y., Luo L.-S. and Dembo M., “Some Progress in Lattice Boltzmann Method. Part I. Nonuniform Mesh Grids”, J. Comput. Phys., Vol. 129, pp. 357-363, 1996. 47
[48] Bruer M., Bernsdorf J., Zeiser T. and Durst F., “Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Bolzmann and finite-volume”, International Journal of Heat and Fluid Flow, Vol. 21, pp. 186-196, 2000.
[49] Warren and Patrick B., “Electroviscous Transport Problems via Lattice-Boltzmann”, Int. J. Mod. Phys. C., Vol. 8 (4), pp. 889-898, 1997.
[50] Cao N., Chen S., Jin S. and Martinez D., “Physical symmetry and lattice symmetry in the lattice boltzmann method”, Phys. Rev. E, Vol. 55, pp. R21-R24, 1997.
[51] Hou S., Zou Q., Chen S., Doolen G. and Cogley A. C., “Simulation of cavity flow by the lattice Boltzmann method”, J. Comput. Phys., Vol. 118, pp. 329-347, 1995.
[52] Lin C. L. and Lai Y. G., “Lattice Boltzmann method on composite grids”, Phy. Rev. E., Vol. 62, pp. 2219-2225, 2000.
[53] Satofuka N. and Nishioka T., “Parallelization of lattice Boltzmann method for incompressible flow computations”, Comput. Mech., Vol. 23, pp. 164-171, 1999.
[54] Kandhai D., Koponen A., Hoekstra A.G., Kataja M., Timonen J. and Sloot P.M.A., “Lattice-Boltzmann hydrodynamics on parallel systems”, Computer Physics Communications, Vol. 111, pp. 14-26, 1998.
[55] Qian Y. H., d’Humieres D. and Lallemand P., “Lattice BGK Models for Navier-Stokes Equation”, Europhys. Lett., Vol. 17, pp. 479-484, 1992.
[56] d'Humieres D. and Lallemand P., “Numerical Simulations of Hydrodynamics with Lattice Gas Automata in Two Dimensions”, Complex Systems, Vol. 1, pp. 599-632, 1987.
[57] Wang J. K., Wang M. R. and Li Z. X., “Lattice Poisson-Boltzmann simulations of electroosmotic flows in microchannels”, J. Colloid Interf. Sci., Vol. 296, pp. 729-736, 2006.
[58] Wang J. K., Wang M. R. and Li Z. X., “Lattice Boltzmann simulations of mixing enhancement by the electro-osmotic flow in microchannels”, Modern. Phys. Lett. B, Vol. 19, pp. 1515-1518, 2005.
[59] Wang M. R. and Kang Q. J., “Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods”, J. Comput. Phys.,Vol. 229, pp. 728-744, 2010.
[60] Tang G. H., Li Z., Wang J. K., He Y. L. and Tao W. Q., “Electroosmotic flow and mixing in microchannels with the lattice Boltzmann method”, J. Appl. Phys., Vol. 100, pp. 094908, 2006.
[61] Wang M. R., Wang J. K., Chen S. Y. and Pan N., “Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method”, J. Colloid. Interf. Sci, Vol. 304, pp. 246-253, 2006.
[62] Wang M. R., Wang J. K. and Chen S. Y., “Roughness and cavitations effects on electroosmotic flows in rough microchannels using the lattice Poisson–Boltzmann methods”, J. Comput. Phys, Vol. 226, pp. 836-851, 2007.
[63] Wang M. R. and Kang Q. J., “Electrokinetic transport in microchannels with random roughness”, Anal. Chem., Vol. 81, pp. 2953-2961, 2009.
[64] Wang M. R., Pan N., Wang J. K. and Chen S. Y., “Lattice Poisson-Boltzmann simulations of electroosmotic flows in charged anisotropic porous media”, Commun. Comput. Phys., Vol. 2, pp. 1055-1070, 2007.
[65] Wang M. R., Kang Q. J., Viswanathan H. and Robinson B. A., “Modeling of electro-osmosis of dilute electrolyte solutions in silica microporous media”, J. Geophys. Res., Vol. 115, pp. B10205, 2010.
[66] Shi Y., Zhao T. S. and Guo Z. L., “Lattice Boltzmann simulation of thermal electroosmotic flows in micro/nanochannels”, J. Comput. Theor. Nanosci., Vol. 5, pp. 236-246, 2008.
[67] Nosrati R., Hadigol M. and Raisee M., “The effect of y-component electroosmotic body force in mixed electroosmotic/pressure driven microflows”, Colloids and Surfaces A: Physicochem. Eng. Aspects., Vol. 372 pp. 190-195, 2010.
[68] Shi Y., Zhao T. S. and Guo Z. L., “Simplified model and lattice Boltzmann algorithm for microscale electro-osmotic flows and heat transfer”, Int. J. Heat. Mass. Transfer., Vol. 51, pp. 586-596, 2008.
[69] Tang G. H., Ye P. X. and Tao W. Q., “Pressure-driven and electroosmotic non-Newtonian flows through microporous media via lattice Boltzmann method”, J. Non-Newtonian Fluid. Mech., Vol. 165, pp. 1536-1542, 2010.
[70] Masilamani K., Ganguly S., Feichtinger C. and Rüde U., “Hybrid lattice-Boltzmann and finite-difference simulation of electroosmotic flow in a microchannel”, Fluid Dyn. Res. Vol. 43, pp. 025501, 2011.
[71] 王竹西,統計物理學導論,凡異出版社,台北市,1985。
[72] 吳浩青,李永舫,電化學動力學,科技圖書出版社,台北市,2001。