| 研究生: |
李肇平 Lee, Chao-Ping |
|---|---|
| 論文名稱: |
雙自由度積層式超音波馬達之設計與實現 Design and Implementation of Two-DOF Multi-layer Ultrasonic Motor |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系碩士在職專班 Department of Mechanical Engineering (on the job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 超音波馬達 、壓電致動器 、雙壓電晶片致動器 、雙自由度 、積層式 、低電壓驅動 |
| 外文關鍵詞: | ultrasonic motor, piezoelectric actuator, bimorph actuator, two degree-of-freedom, multi-layer, low driving voltage |
| 相關次數: | 點閱:183 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
智慧型手機等可攜式產品在近年來蓬勃的發展,這為可應用於可攜式產品的元件,提供了廣大的商機。超音波馬達由於結構適於微型化、低噪音以及在小型化時的效率較其他致動器為高,因此極適合應用於可攜式產品。
本研究利用雙壓電晶片振動子結構設計超音波馬達,經由適當的電極及結構設計,使之具備二個自由度的運動方向。分別對基本單層型以及積層式壓電振動子超音波馬達進行了性能量測後,在400V/mm電場強度下,基本單層型雙壓電晶片超音波馬達振動子之驅動電壓為120V,最大推力3.0765N,最大速度87.75mm/s,最大效率為4.201%。而積層式雙壓電晶片超音波馬達振動子的驅動電壓則為24V,最大推力2.5782N,最大速度74.23mm/s,最大效率為11.633%。結果顯示積層式振動子有潛力應用於可攜式產品。
The portable devices like smart phone had been developed vigorously in these years. It provides a huge opportunity for those components which can be applied for portable devices. Due to its compact size, low noise and high efficiency in miniature structure, ultrasonic motor shows its advantage for portable devices application.
An ultrasonic motor using bimorph piezoelectric actuator had been developed in this research. There are two degree-of –freedoms movement can be operated through suitable electrode and structure design. The performance had been measured for single layer bimorph actuator and multi-layer bimorph actuator, respectively. Under 400V/mm electric field, the single layer bimorph actuator drove at 120V, maximum trust 3.0765N, maximum free velocity 87.75mm/s and maximum efficiency 4.201%. At the same electric field condition, the multi-layer bimorph actuator drove at 24V and showed maximum trust 2.5782N, maximum free velocity 74.23mm/s and maximum efficiency 11.633%. The result showed the potential of multi-layer bimorph type ultrasonic motor which can be applied for portable devices.
[1] Allik, H. and Hughes, J. R., “Finite Element for Piezoelectric Vibration”, International Journal Numerical Methods of Engineering, No.2, pp.151-157, 1970.
[2] ANSYS Multiphysics 9.0 version, User manual, ANSYS Inc., 2004.
[3] Aoyagi, M., Beeby, S.P. and White, N. M.; “A novel multi-degree-of- freedom thick-film ultrasonic motor”, IEEE Transactions on Ferroelectrics and Frequency Control, Ultrasonics, Vol. 49, Iss. 2, pp. 151 – 158, 2002
[4] Aoyagi, M.; Tomikawa, T. and Takano, T.; “A novel ultrasonic motor with a built-in clutch mechanism for a force-feed-back actuator”, IEEE Ultrasonics Symposium, Vol. 3, pp.2239 – 2242, 2004
[5] Carotenuto, R.; Lamberti, N.; Iula, A. and Pappalardo, M.; “A low voltage piezoelectric micromotor using a thin circular membrane” IEEE Ultrasonics Symposium, Vol. 1, PP. 459 – 462, 1997
[6] Kawano, H. and Hirahara, T., “Three-DOF angular positioning control using a multi-DOF ultrasonic motor in the pre-loaded condition: application to the auditory tele-existence robot "TeleHead“”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Proc., Vol. 3, pp. 2247 – 2253, 2003
[7] Kawano,H., Ando,H, Hirahara,Y.,Yun,C. and Ueha,S., “Application of a Multi-DOF Ultrasonic Servomotor in an Auditory Tele-Existence Robot” IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 5, pp.790-800, 2005
[8] Kumada, A., “A Piezoelectric Ultrasonic Motor,” Japanese Journal of Applied Physics. vol.24, Suppl. 24-2, pp.739-741, 1985
[9] Otokawa, K. and Maeno, T., “Development of an arrayed-type multi-degree-of-freedom ultrasonic motor based on a selection of reciprocating vibration modes”, IEEE Symposium Ultrasonics, Vol. 2, pp. 1181 – 1184, 2004
[10] Spanner, A. “Survey of the Various Operating Principles of Ultrasonic Piezomotor”, Presented at the ACTUATOR 2006, 10th International Conference on New Actuators, Bremen, 2006
[11] Takemura,K., Kojima, N. and Maeno, T., “Development of a Bar-Shaped Ultrasonic Motor for Three Degrees-of-Freedom Motion”, Proc. 4th International Conference on Motion and Vibration Control, pp. 195-200, 1998.
[12] Takemura, K. and Maeno, T., “Characteristics of an Ultrasonic Motor Capable of Generating a Multi-Degrees of Freedom Motion”, Proc. lEEE International Conference on Robotics & Automation, pp. 3360-3365, 2000
[13] Takemura, K., Ohno, Y. and Maeno, T., “Design of a plate type multi-DOF ultrasonic motor and its driving characteristics”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Proc., Vol. 2, pp.1309 – 1314, 2003
[14] Toyama, S.; Sugitani, S.; Zhang Guoqiang; Miyatani, Y. and Nakamura, K.; “Multi degree of freedom spherical ultrasonic motor”, IEEE International Conference on Robotics and Automation, Vol. 3, pp. 2935 – 2940, 1995
[15] Uchino, K and Giniewicz, J. R., Micromechatronics, Marcel Dekker, Inc., New York, 2003.
[16] Ueha, S. and Tomikawa, Y., Ultrasonic Motors: Theory and Applications. Oxford: Clarendon Press, 1993.
[17] Vishevsky., V. et al, “Piezoelectric motor structures”, US Patent No . 4019073, 1975.
[18] Williams, A. L. W. and Brown, W. J., “Piezoelectric motor”, US Patent No . 2439499, 1942.Oxford: Clarendon Press, 1993.
[19] Yao, K., Koc, B. and Uchino, K.; “Longitudinal-bending mode micromotor using multilayer piezoelectric actuator “IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 48, Iss. 4, pp. 1066 – 1071, 2001
[20] Zhang, M., Li, M. and Sun, L., “A Multi-DOF Ultrasonic Motor Using In-Plane Deformation of PZT Elements”, IEEE Ultrasonics Symposium, pp.2335 – 2338, 2007
[21] Zhang, X., Nakamura, K.and Ueha, S., “A Multi-Degrees-of- Freedom Ultrasonic Motor Design for Robotics Applications”, IEEE Ultrasonics Symposium, pp. 2281 – 2284, 2006